public class CifarLoader extends NativeImageLoader implements java.io.Serializable
Modifier and Type | Field and Description |
---|---|
static int |
BYTEFILELEN |
protected static int |
channels |
static int |
CHANNELS |
static java.util.Map<java.lang.String,java.lang.String> |
cifarDataMap |
static java.lang.String |
dataBinFile |
static java.lang.String |
dataBinUrl |
protected int |
fileNum |
static java.io.File |
fullDir |
protected static int |
height |
static int |
HEIGHT |
protected static java.util.List<org.nd4j.linalg.dataset.DataSet> |
inputBatched |
protected static java.io.InputStream |
inputStream |
protected static java.lang.String |
labelFileName |
protected static java.util.List<java.lang.String> |
labels |
protected org.nd4j.linalg.dataset.DataSet |
loadDS |
protected int |
loadDSIndex |
static java.lang.String |
localDir |
protected boolean |
meanStdStored |
static java.io.File |
meanVarPath |
static int |
NUM_LABELS |
static int |
NUM_TEST_IMAGES |
static int |
NUM_TRAIN_IMAGES |
protected int |
numExamples |
protected static int |
numToConvertDS |
protected static long |
seed |
protected static boolean |
shuffle |
static java.lang.String |
TESTFILENAME |
protected static java.lang.String |
testFilesSerialized |
protected static java.io.InputStream |
testInputStream |
protected static boolean |
train |
static java.lang.String[] |
TRAINFILENAMES |
protected static java.lang.String |
trainFilesSerialized |
protected static java.io.InputStream |
trainInputStream |
protected double |
uMean |
static boolean |
useSpecialPreProcessCifar |
protected double |
uStd |
protected double |
vMean |
protected double |
vStd |
protected static int |
width |
static int |
WIDTH |
ALLOWED_FORMATS
BASE_DIR, centerCropIfNeeded, imageTransform, log, rng
Constructor and Description |
---|
CifarLoader() |
CifarLoader(boolean train) |
CifarLoader(boolean train,
java.io.File fullPath) |
CifarLoader(int height,
int width,
int channels,
boolean train,
boolean useSpecialPreProcessCifar) |
CifarLoader(int height,
int width,
int channels,
ImageTransform imgTransform,
boolean train,
boolean useSpecialPreProcessCifar) |
CifarLoader(int height,
int width,
int channels,
ImageTransform imgTransform,
boolean train,
boolean useSpecialPreProcessCifar,
boolean shuffle) |
CifarLoader(int height,
int width,
int channels,
ImageTransform imgTransform,
boolean train,
boolean useSpecialPreProcessCifar,
java.io.File fullPath,
long seed,
boolean shuffle) |
Modifier and Type | Method and Description |
---|---|
org.nd4j.linalg.api.ndarray.INDArray |
asMatrix(java.io.File f) |
org.nd4j.linalg.api.ndarray.INDArray |
asMatrix(java.io.InputStream inputStream) |
org.nd4j.linalg.api.ndarray.INDArray |
asRowVector(java.io.File f)
Convert a file to a row vector
|
org.nd4j.linalg.api.ndarray.INDArray |
asRowVector(java.io.InputStream inputStream) |
boolean |
cifarRawFilesExist() |
org.bytedeco.javacpp.opencv_core.Mat |
convertCifar(org.bytedeco.javacpp.opencv_core.Mat orgImage)
Preprocess and store cifar based on successful Torch approach by Sergey Zagoruyko
Reference: https://github.com/szagoruyko/cifar.torch
|
org.nd4j.linalg.dataset.DataSet |
convertDataSet(int num) |
Pair<org.nd4j.linalg.api.ndarray.INDArray,org.bytedeco.javacpp.opencv_core.Mat> |
convertMat(byte[] byteFeature) |
void |
generateMaps() |
java.io.InputStream |
getInputStream() |
java.util.List<java.lang.String> |
getLabels() |
void |
load() |
org.nd4j.linalg.dataset.DataSet |
next(int batchSize) |
org.nd4j.linalg.dataset.DataSet |
next(int batchSize,
int exampleNum) |
void |
normalizeCifar(java.io.File fileName)
Normalize and store cifar based on successful Torch approach by Sergey Zagoruyko
Reference: https://github.com/szagoruyko/cifar.torch
|
void |
reset() |
void |
setInputStream() |
void |
test() |
void |
train() |
double |
varManual(org.nd4j.linalg.api.ndarray.INDArray x,
double mean) |
asMatrix, asMatrix, asRowVector, asRowVector, centerCropIfNeeded, getAllowedFormats, scalingIfNeed, scalingIfNeed
downloadAndUntar
public static final int NUM_TRAIN_IMAGES
public static final int NUM_TEST_IMAGES
public static final int NUM_LABELS
public static final int HEIGHT
public static final int WIDTH
public static final int CHANNELS
public static final int BYTEFILELEN
public static java.lang.String dataBinUrl
public static java.lang.String localDir
public static java.lang.String dataBinFile
public static java.io.File fullDir
public static java.io.File meanVarPath
protected static java.lang.String labelFileName
protected static java.io.InputStream inputStream
protected static java.io.InputStream trainInputStream
protected static java.io.InputStream testInputStream
protected static java.util.List<org.nd4j.linalg.dataset.DataSet> inputBatched
protected static java.util.List<java.lang.String> labels
public static java.lang.String[] TRAINFILENAMES
public static java.lang.String TESTFILENAME
protected static java.lang.String trainFilesSerialized
protected static java.lang.String testFilesSerialized
protected static boolean train
public static boolean useSpecialPreProcessCifar
public static java.util.Map<java.lang.String,java.lang.String> cifarDataMap
protected static int height
protected static int width
protected static int channels
protected static long seed
protected static boolean shuffle
protected int numExamples
protected static int numToConvertDS
protected double uMean
protected double uStd
protected double vMean
protected double vStd
protected boolean meanStdStored
protected int loadDSIndex
protected org.nd4j.linalg.dataset.DataSet loadDS
protected int fileNum
public CifarLoader()
public CifarLoader(boolean train)
public CifarLoader(boolean train, java.io.File fullPath)
public CifarLoader(int height, int width, int channels, boolean train, boolean useSpecialPreProcessCifar)
public CifarLoader(int height, int width, int channels, ImageTransform imgTransform, boolean train, boolean useSpecialPreProcessCifar)
public CifarLoader(int height, int width, int channels, ImageTransform imgTransform, boolean train, boolean useSpecialPreProcessCifar, boolean shuffle)
public CifarLoader(int height, int width, int channels, ImageTransform imgTransform, boolean train, boolean useSpecialPreProcessCifar, java.io.File fullPath, long seed, boolean shuffle)
public org.nd4j.linalg.api.ndarray.INDArray asRowVector(java.io.File f) throws java.io.IOException
NativeImageLoader
asRowVector
in class NativeImageLoader
f
- the image to convertjava.io.IOException
public org.nd4j.linalg.api.ndarray.INDArray asRowVector(java.io.InputStream inputStream) throws java.io.IOException
asRowVector
in class NativeImageLoader
java.io.IOException
public org.nd4j.linalg.api.ndarray.INDArray asMatrix(java.io.File f) throws java.io.IOException
asMatrix
in class NativeImageLoader
java.io.IOException
public org.nd4j.linalg.api.ndarray.INDArray asMatrix(java.io.InputStream inputStream) throws java.io.IOException
asMatrix
in class NativeImageLoader
java.io.IOException
public void generateMaps()
public void load()
public boolean cifarRawFilesExist()
public org.bytedeco.javacpp.opencv_core.Mat convertCifar(org.bytedeco.javacpp.opencv_core.Mat orgImage)
public void normalizeCifar(java.io.File fileName)
public Pair<org.nd4j.linalg.api.ndarray.INDArray,org.bytedeco.javacpp.opencv_core.Mat> convertMat(byte[] byteFeature)
public org.nd4j.linalg.dataset.DataSet convertDataSet(int num)
public double varManual(org.nd4j.linalg.api.ndarray.INDArray x, double mean)
public org.nd4j.linalg.dataset.DataSet next(int batchSize)
public org.nd4j.linalg.dataset.DataSet next(int batchSize, int exampleNum)
public java.io.InputStream getInputStream()
public void setInputStream()
public java.util.List<java.lang.String> getLabels()
public void reset()
public void train()
public void test()