public class LFWDataSetIterator extends RecordReaderDataSetIterator
batchNum, batchSize, converter, labelIndex, labelIndexTo, last, maxNumBatches, numPossibleLabels, preProcessor, recordReader, regression, sequenceIter, useCurrent| Constructor and Description |
|---|
LFWDataSetIterator(int[] imgDim)
Loads subset of images with given imgDim returned by the generator.
|
LFWDataSetIterator(int batchSize,
int numExamples)
Loads images with given batchSize, numExamples returned by the generator.
|
LFWDataSetIterator(int batchSize,
int[] imgDim,
boolean useSubset)
Loads images with given batchSize, imgDim, useSubset, returned by the generator.
|
LFWDataSetIterator(int batchSize,
int numExamples,
int[] imgDim)
Loads images with given batchSize, numExamples, imgDim returned by the generator.
|
LFWDataSetIterator(int batchSize,
int numExamples,
int[] imgDim,
boolean train,
double splitTrainTest)
Loads images with given batchSize, numExamples, imgDim, train, & splitTrainTest returned by the generator.
|
LFWDataSetIterator(int batchSize,
int numExamples,
int[] imgDim,
int numLabels,
boolean useSubset,
boolean train,
double splitTrainTest,
java.util.Random rng)
Loads images with given batchSize, numExamples, imgDim, numLabels, useSubset, train, splitTrainTest & Random returned by the generator.
|
LFWDataSetIterator(int batchSize,
int numExamples,
int[] imgDim,
int numLabels,
boolean useSubset,
org.datavec.api.io.labels.PathLabelGenerator labelGenerator,
boolean train,
double splitTrainTest,
org.datavec.image.transform.ImageTransform imageTransform,
java.util.Random rng)
Create LFW data specific iterator
|
LFWDataSetIterator(int batchSize,
int numExamples,
int[] imgDim,
int numLabels,
boolean useSubset,
org.datavec.api.io.labels.PathLabelGenerator labelGenerator,
boolean train,
double splitTrainTest,
java.util.Random rng)
Loads images with given batchSize, numExamples, imgDim, numLabels, useSubset, train, splitTrainTest & Random returned by the generator.
|
LFWDataSetIterator(int batchSize,
int numExamples,
int numLabels,
boolean train,
double splitTrainTest)
Loads images with given batchSize, numExamples, numLabels, train, & splitTrainTest returned by the generator.
|
asyncSupported, batch, cursor, getLabels, hasNext, inputColumns, loadFromMetaData, loadFromMetaData, next, next, numExamples, remove, reset, resetSupported, setPreProcessor, totalExamples, totalOutcomesclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitpublic LFWDataSetIterator(int[] imgDim)
public LFWDataSetIterator(int batchSize,
int numExamples)
public LFWDataSetIterator(int batchSize,
int numExamples,
int[] imgDim)
public LFWDataSetIterator(int batchSize,
int[] imgDim,
boolean useSubset)
public LFWDataSetIterator(int batchSize,
int numExamples,
int[] imgDim,
boolean train,
double splitTrainTest)
public LFWDataSetIterator(int batchSize,
int numExamples,
int numLabels,
boolean train,
double splitTrainTest)
public LFWDataSetIterator(int batchSize,
int numExamples,
int[] imgDim,
int numLabels,
boolean useSubset,
boolean train,
double splitTrainTest,
java.util.Random rng)
public LFWDataSetIterator(int batchSize,
int numExamples,
int[] imgDim,
int numLabels,
boolean useSubset,
org.datavec.api.io.labels.PathLabelGenerator labelGenerator,
boolean train,
double splitTrainTest,
java.util.Random rng)
public LFWDataSetIterator(int batchSize,
int numExamples,
int[] imgDim,
int numLabels,
boolean useSubset,
org.datavec.api.io.labels.PathLabelGenerator labelGenerator,
boolean train,
double splitTrainTest,
org.datavec.image.transform.ImageTransform imageTransform,
java.util.Random rng)
batchSize - the batch size of the examplesnumExamples - the overall number of examplesimgDim - an array of height, width and channelsnumLabels - the overall number of examplesuseSubset - use a subset of the LFWDataSetlabelGenerator - path label generator to usetrain - true if use train valuesplitTrainTest - the percentage to split data for train and remainder goes to testimageTransform - how to transform the imagerng - random number to lock in batch shuffling