public static class MultiLayerConfiguration.Builder
extends java.lang.Object
Modifier and Type | Field and Description |
---|---|
protected boolean |
backprop |
protected BackpropType |
backpropType |
protected int[] |
cnnInputSize
Deprecated.
|
protected java.util.List<NeuralNetConfiguration> |
confs |
protected double |
dampingFactor |
protected java.util.Map<java.lang.Integer,InputPreProcessor> |
inputPreProcessors |
protected InputType |
inputType |
protected boolean |
pretrain |
protected int |
tbpttBackLength |
protected int |
tbpttFwdLength |
Constructor and Description |
---|
Builder() |
Modifier and Type | Method and Description |
---|---|
MultiLayerConfiguration.Builder |
backprop(boolean backprop)
Whether to do back prop or not
|
MultiLayerConfiguration.Builder |
backpropType(BackpropType type)
The type of backprop.
|
MultiLayerConfiguration |
build() |
MultiLayerConfiguration.Builder |
cnnInputSize(int[] cnnInputSize)
Deprecated.
use
setInputType(InputType) with InputType.convolutional(height,width,depth) , for CNN data with
shape [minibatchSize,depth,height,width]. For image data that has been flattened into a row vector per example
(shape [minibatchSize,depth*height*width]) instead use InputType.convolutionalFlat(height,width,depth) |
MultiLayerConfiguration.Builder |
cnnInputSize(int height,
int width,
int depth)
Deprecated.
use
setInputType(InputType) with InputType.convolutional(height,width,depth) , for CNN data with
shape [minibatchSize,depth,height,width]. For image data that has been flattened into a row vector per example
(shape [minibatchSize,depth*height*width]) instead use InputType.convolutionalFlat(height,width,depth) |
MultiLayerConfiguration.Builder |
confs(java.util.List<NeuralNetConfiguration> confs) |
MultiLayerConfiguration.Builder |
inputPreProcessor(java.lang.Integer layer,
InputPreProcessor processor)
Specify the processors.
|
MultiLayerConfiguration.Builder |
inputPreProcessors(java.util.Map<java.lang.Integer,InputPreProcessor> processors) |
MultiLayerConfiguration.Builder |
pretrain(boolean pretrain)
Whether to do pre train or not
|
MultiLayerConfiguration.Builder |
setInputType(InputType inputType) |
MultiLayerConfiguration.Builder |
tBPTTBackwardLength(int backwardLength)
When doing truncated BPTT: how many steps of backward should we do?
Only applicable when doing backpropType(BackpropType.TruncatedBPTT) This is the k2 parameter on pg23 of http://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf |
MultiLayerConfiguration.Builder |
tBPTTForwardLength(int forwardLength)
When doing truncated BPTT: how many steps of forward pass should we do
before doing (truncated) backprop?
Only applicable when doing backpropType(BackpropType.TruncatedBPTT) Typically tBPTTForwardLength parameter is same as the tBPTTBackwardLength parameter, but may be larger than it in some circumstances (but never smaller) Ideally your training data time series length should be divisible by this This is the k1 parameter on pg23 of http://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf |
protected java.util.List<NeuralNetConfiguration> confs
protected double dampingFactor
protected java.util.Map<java.lang.Integer,InputPreProcessor> inputPreProcessors
protected boolean pretrain
protected boolean backprop
protected BackpropType backpropType
protected int tbpttFwdLength
protected int tbpttBackLength
protected InputType inputType
@Deprecated protected int[] cnnInputSize
public MultiLayerConfiguration.Builder inputPreProcessor(java.lang.Integer layer, InputPreProcessor processor)
processor
- what to use to preProcess the data.public MultiLayerConfiguration.Builder inputPreProcessors(java.util.Map<java.lang.Integer,InputPreProcessor> processors)
public MultiLayerConfiguration.Builder backprop(boolean backprop)
backprop
- whether to do back prop or notpublic MultiLayerConfiguration.Builder backpropType(BackpropType type)
public MultiLayerConfiguration.Builder tBPTTForwardLength(int forwardLength)
forwardLength
- Forward length > 0, >= backwardLengthpublic MultiLayerConfiguration.Builder tBPTTBackwardLength(int backwardLength)
backwardLength
- <= forwardLengthpublic MultiLayerConfiguration.Builder pretrain(boolean pretrain)
pretrain
- whether to do pre train or notpublic MultiLayerConfiguration.Builder confs(java.util.List<NeuralNetConfiguration> confs)
@Deprecated public MultiLayerConfiguration.Builder cnnInputSize(int height, int width, int depth)
setInputType(InputType)
with InputType.convolutional(height,width,depth)
, for CNN data with
shape [minibatchSize,depth,height,width]. For image data that has been flattened into a row vector per example
(shape [minibatchSize,depth*height*width]) instead use InputType.convolutionalFlat(height,width,depth)
height
- Input image heightwidth
- Input image widthdepth
- Input image depth / number of channels (for example: 3 for color, 1 for grayscale etc)@Deprecated public MultiLayerConfiguration.Builder cnnInputSize(int[] cnnInputSize)
setInputType(InputType)
with InputType.convolutional(height,width,depth)
, for CNN data with
shape [minibatchSize,depth,height,width]. For image data that has been flattened into a row vector per example
(shape [minibatchSize,depth*height*width]) instead use InputType.convolutionalFlat(height,width,depth)
cnnInputSize(int, int, int)
public MultiLayerConfiguration.Builder setInputType(InputType inputType)
public MultiLayerConfiguration build()