public class BatchNormalization extends FeedForwardLayer
| Modifier and Type | Class and Description |
|---|---|
static class |
BatchNormalization.Builder |
| Modifier and Type | Field and Description |
|---|---|
protected double |
beta |
protected double |
decay |
protected double |
eps |
protected double |
gamma |
protected boolean |
isMinibatch |
protected boolean |
lockGammaBeta |
nIn, nOutactivationFn, adamMeanDecay, adamVarDecay, biasInit, biasLearningRate, dist, dropOut, epsilon, gradientNormalization, gradientNormalizationThreshold, l1, l1Bias, l2, l2Bias, layerName, learningRate, learningRateSchedule, momentum, momentumSchedule, rho, rmsDecay, updater, weightInit| Modifier and Type | Method and Description |
|---|---|
BatchNormalization |
clone() |
double |
getL1ByParam(java.lang.String paramName)
Get the L1 coefficient for the given parameter.
|
double |
getL2ByParam(java.lang.String paramName)
Get the L2 coefficient for the given parameter.
|
double |
getLearningRateByParam(java.lang.String paramName)
Get the (initial) learning rate coefficient for the given parameter.
|
InputType |
getOutputType(int layerIndex,
InputType inputType)
For a given type of input to this layer, what is the type of the output?
|
InputPreProcessor |
getPreProcessorForInputType(InputType inputType)
For the given type of input to this layer, what preprocessor (if any) is required?
Returns null if no preprocessor is required, otherwise returns an appropriate InputPreProcessor
for this layer, such as a CnnToFeedForwardPreProcessor |
Updater |
getUpdaterByParam(java.lang.String paramName)
Get the updater for the given parameter.
|
ParamInitializer |
initializer() |
Layer |
instantiate(NeuralNetConfiguration conf,
java.util.Collection<IterationListener> iterationListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
void |
setNIn(InputType inputType,
boolean override)
Set the nIn value (number of inputs, or input depth for CNNs) based on the given input type
|
resetLayerDefaultConfigprotected double decay
protected double eps
protected boolean isMinibatch
protected double gamma
protected double beta
protected boolean lockGammaBeta
public BatchNormalization clone()
public Layer instantiate(NeuralNetConfiguration conf, java.util.Collection<IterationListener> iterationListeners, int layerIndex, org.nd4j.linalg.api.ndarray.INDArray layerParamsView, boolean initializeParams)
instantiate in class Layerpublic ParamInitializer initializer()
initializer in class Layerpublic InputType getOutputType(int layerIndex, InputType inputType)
LayergetOutputType in class FeedForwardLayerlayerIndex - Index of the layerinputType - Type of input for the layerpublic void setNIn(InputType inputType, boolean override)
LayersetNIn in class FeedForwardLayerinputType - Input type for this layeroverride - If false: only set the nIn value if it's not already set. If true: set it regardless of whether it's
already set or not.public InputPreProcessor getPreProcessorForInputType(InputType inputType)
LayerInputPreProcessor
for this layer, such as a CnnToFeedForwardPreProcessorgetPreProcessorForInputType in class FeedForwardLayerinputType - InputType to this layerpublic double getL1ByParam(java.lang.String paramName)
LayergetL1ByParam in class FeedForwardLayerparamName - Parameter namepublic double getL2ByParam(java.lang.String paramName)
LayergetL2ByParam in class FeedForwardLayerparamName - Parameter namepublic double getLearningRateByParam(java.lang.String paramName)
LayergetLearningRateByParam in class FeedForwardLayerparamName - Parameter namepublic Updater getUpdaterByParam(java.lang.String paramName)
LayergetUpdaterByParam in class LayerparamName - Parameter name