public static class ConvolutionLayer.Builder extends ConvolutionLayer.BaseConvBuilder<ConvolutionLayer.Builder>
convolutionMode, cudnnAlgoMode, kernelSize, padding, stridenIn, nOutactivationFn, adamMeanDecay, adamVarDecay, biasInit, biasLearningRate, dist, dropOut, epsilon, gradientNormalization, gradientNormalizationThreshold, l1, l1Bias, l2, l2Bias, layerName, learningRate, learningRatePolicy, learningRateSchedule, momentum, momentumAfter, rho, rmsDecay, updater, weightInit| Constructor and Description |
|---|
Builder() |
Builder(int... kernelSize) |
Builder(int[] kernelSize,
int[] stride) |
Builder(int[] kernelSize,
int[] stride,
int[] padding) |
| Modifier and Type | Method and Description |
|---|---|
ConvolutionLayer.Builder |
activation(org.nd4j.linalg.activations.Activation activation) |
ConvolutionLayer.Builder |
activation(org.nd4j.linalg.activations.IActivation activationFunction) |
ConvolutionLayer.Builder |
adamMeanDecay(double adamMeanDecay)
Mean decay rate for Adam updater.
|
ConvolutionLayer.Builder |
adamVarDecay(double adamVarDecay)
Variance decay rate for Adam updater.
|
ConvolutionLayer.Builder |
biasInit(double biasInit) |
ConvolutionLayer.Builder |
biasLearningRate(double biasLearningRate)
Bias learning rate.
|
ConvolutionLayer |
build() |
ConvolutionLayer.Builder |
convolutionMode(ConvolutionMode convolutionMode)
Set the convolution mode for the Convolution layer.
|
ConvolutionLayer.Builder |
cudnnAlgoMode(ConvolutionLayer.AlgoMode cudnnAlgoMode)
Defaults to "PREFER_FASTEST", but "NO_WORKSPACE" uses less memory.
|
ConvolutionLayer.Builder |
dist(Distribution dist)
Distribution to sample initial weights from.
|
ConvolutionLayer.Builder |
dropOut(double dropOut)
Dropout.
|
ConvolutionLayer.Builder |
epsilon(double epsilon)
Epsilon value for updaters: Adagrad and Adadelta.
|
ConvolutionLayer.Builder |
gradientNormalization(GradientNormalization gradientNormalization)
Gradient normalization strategy.
|
ConvolutionLayer.Builder |
gradientNormalizationThreshold(double threshold)
Threshold for gradient normalization, only used for GradientNormalization.ClipL2PerLayer,
GradientNormalization.ClipL2PerParamType, and GradientNormalization.ClipElementWiseAbsoluteValue
Not used otherwise. L2 threshold for first two types of clipping, or absolute value threshold for last type of clipping. |
ConvolutionLayer.Builder |
kernelSize(int... kernelSize)
Size of the convolution
rows/columns
|
ConvolutionLayer.Builder |
l1(double l1)
L1 regularization coefficient (weights only).
|
ConvolutionLayer.Builder |
l1Bias(double l1Bias)
L1 regularization coefficient for the bias.
|
ConvolutionLayer.Builder |
l2(double l2)
L2 regularization coefficient (weights only).
|
ConvolutionLayer.Builder |
l2Bias(double l2Bias)
L2 regularization coefficient for the bias.
|
ConvolutionLayer.Builder |
learningRate(double learningRate)
Learning rate.
|
ConvolutionLayer.Builder |
learningRateDecayPolicy(LearningRatePolicy policy)
Learning rate decay policy.
|
ConvolutionLayer.Builder |
learningRateSchedule(java.util.Map<java.lang.Integer,java.lang.Double> learningRateSchedule)
Learning rate schedule.
|
ConvolutionLayer.Builder |
momentum(double momentum)
Momentum rate.
|
ConvolutionLayer.Builder |
momentumAfter(java.util.Map<java.lang.Integer,java.lang.Double> momentumAfter)
Momentum schedule.
|
ConvolutionLayer.Builder |
name(java.lang.String layerName)
Layer name assigns layer string name.
|
ConvolutionLayer.Builder |
nIn(int nIn) |
ConvolutionLayer.Builder |
nOut(int nOut) |
ConvolutionLayer.Builder |
padding(int... padding) |
ConvolutionLayer.Builder |
rho(double rho)
Ada delta coefficient, rho.
|
ConvolutionLayer.Builder |
rmsDecay(double rmsDecay)
Decay rate for RMSProp.
|
ConvolutionLayer.Builder |
stride(int... stride) |
ConvolutionLayer.Builder |
updater(Updater updater)
Gradient updater.
|
ConvolutionLayer.Builder |
weightInit(WeightInit weightInit)
Weight initialization scheme.
|
activationpublic Builder(int[] kernelSize,
int[] stride,
int[] padding)
public Builder(int[] kernelSize,
int[] stride)
public Builder(int... kernelSize)
public Builder()
public ConvolutionLayer.Builder convolutionMode(ConvolutionMode convolutionMode)
ConvolutionMode for more detailsconvolutionMode in class ConvolutionLayer.BaseConvBuilder<ConvolutionLayer.Builder>convolutionMode - Convolution mode for layerpublic ConvolutionLayer.Builder nIn(int nIn)
nIn in class FeedForwardLayer.Builder<ConvolutionLayer.Builder>public ConvolutionLayer.Builder nOut(int nOut)
nOut in class FeedForwardLayer.Builder<ConvolutionLayer.Builder>public ConvolutionLayer.Builder cudnnAlgoMode(ConvolutionLayer.AlgoMode cudnnAlgoMode)
cudnnAlgoMode in class ConvolutionLayer.BaseConvBuilder<ConvolutionLayer.Builder>cudnnAlgoMode - public ConvolutionLayer.Builder name(java.lang.String layerName)
name in class Layer.Builder<ConvolutionLayer.Builder>layerName - public ConvolutionLayer.Builder activation(org.nd4j.linalg.activations.IActivation activationFunction)
activation in class Layer.Builder<ConvolutionLayer.Builder>public ConvolutionLayer.Builder activation(org.nd4j.linalg.activations.Activation activation)
activation in class Layer.Builder<ConvolutionLayer.Builder>public ConvolutionLayer.Builder weightInit(WeightInit weightInit)
weightInit in class Layer.Builder<ConvolutionLayer.Builder>weightInit - WeightInitpublic ConvolutionLayer.Builder biasInit(double biasInit)
biasInit in class Layer.Builder<ConvolutionLayer.Builder>public ConvolutionLayer.Builder dist(Distribution dist)
dist in class Layer.Builder<ConvolutionLayer.Builder>dist - public ConvolutionLayer.Builder learningRate(double learningRate)
learningRate in class Layer.Builder<ConvolutionLayer.Builder>learningRate - public ConvolutionLayer.Builder biasLearningRate(double biasLearningRate)
biasLearningRate in class Layer.Builder<ConvolutionLayer.Builder>biasLearningRate - public ConvolutionLayer.Builder learningRateSchedule(java.util.Map<java.lang.Integer,java.lang.Double> learningRateSchedule)
learningRateSchedule in class Layer.Builder<ConvolutionLayer.Builder>learningRateSchedule - public ConvolutionLayer.Builder l1(double l1)
l1Bias(double) to configure the l1 regularization
coefficient for the bias.l1 in class Layer.Builder<ConvolutionLayer.Builder>l1 - public ConvolutionLayer.Builder l2(double l2)
l2Bias(double) to configure the l2 regularization
coefficient for the bias.l2 in class Layer.Builder<ConvolutionLayer.Builder>l2 - public ConvolutionLayer.Builder l1Bias(double l1Bias)
l1(double)l1Bias in class Layer.Builder<ConvolutionLayer.Builder>l1Bias - public ConvolutionLayer.Builder l2Bias(double l2Bias)
l2(double)l2Bias in class Layer.Builder<ConvolutionLayer.Builder>l2Bias - public ConvolutionLayer.Builder dropOut(double dropOut)
dropOut in class Layer.Builder<ConvolutionLayer.Builder>dropOut - public ConvolutionLayer.Builder momentum(double momentum)
momentum in class Layer.Builder<ConvolutionLayer.Builder>momentum - public ConvolutionLayer.Builder momentumAfter(java.util.Map<java.lang.Integer,java.lang.Double> momentumAfter)
momentumAfter in class Layer.Builder<ConvolutionLayer.Builder>momentumAfter - public ConvolutionLayer.Builder updater(Updater updater)
updater in class Layer.Builder<ConvolutionLayer.Builder>updater - Updaterpublic ConvolutionLayer.Builder rho(double rho)
rho in class Layer.Builder<ConvolutionLayer.Builder>rho - public ConvolutionLayer.Builder rmsDecay(double rmsDecay)
rmsDecay in class Layer.Builder<ConvolutionLayer.Builder>rmsDecay - public ConvolutionLayer.Builder epsilon(double epsilon)
epsilon in class Layer.Builder<ConvolutionLayer.Builder>epsilon - Epsilon value to use for adagrad and adadeltapublic ConvolutionLayer.Builder adamMeanDecay(double adamMeanDecay)
adamMeanDecay in class Layer.Builder<ConvolutionLayer.Builder>adamMeanDecay - public ConvolutionLayer.Builder adamVarDecay(double adamVarDecay)
adamVarDecay in class Layer.Builder<ConvolutionLayer.Builder>adamVarDecay - public ConvolutionLayer.Builder gradientNormalization(GradientNormalization gradientNormalization)
gradientNormalization in class Layer.Builder<ConvolutionLayer.Builder>gradientNormalization - Type of normalization to use. Defaults to None.GradientNormalizationpublic ConvolutionLayer.Builder gradientNormalizationThreshold(double threshold)
gradientNormalizationThreshold in class Layer.Builder<ConvolutionLayer.Builder>threshold - public ConvolutionLayer.Builder learningRateDecayPolicy(LearningRatePolicy policy)
learningRateDecayPolicy in class Layer.Builder<ConvolutionLayer.Builder>policy - Type of policy to use. Defaults to None.GradientNormalizationpublic ConvolutionLayer.Builder kernelSize(int... kernelSize)
kernelSize - the height and width of the
kernelpublic ConvolutionLayer.Builder stride(int... stride)
public ConvolutionLayer.Builder padding(int... padding)
public ConvolutionLayer build()
build in class Layer.Builder<ConvolutionLayer.Builder>