public class GlobalPoolingLayer extends Layer
PoolingTypes: SUM, AVG, MAX, PNORM
 Behaviour with default settings:
 - 3d (time series) input with shape [minibatchSize, vectorSize, timeSeriesLength] -> 2d output [minibatchSize, vectorSize]
 - 4d (CNN) input with shape [minibatchSize, depth, height, width] -> 2d output [minibatchSize, depth]
 
 Alternatively, by setting collapseDimensions = false in the configuration, it is possible to retain the reduced dimensions
 as 1s: this gives [minibatchSize, vectorSize, 1] for RNN output, and [minibatchSize, depth, 1, 1] for CNN output.
| Modifier and Type | Class and Description | 
|---|---|
| static class  | GlobalPoolingLayer.Builder | 
activationFn, adamMeanDecay, adamVarDecay, biasInit, biasLearningRate, dist, dropOut, epsilon, gradientNormalization, gradientNormalizationThreshold, l1, l1Bias, l2, l2Bias, layerName, learningRate, learningRateSchedule, momentum, momentumSchedule, rho, rmsDecay, updater, weightInit| Modifier and Type | Method and Description | 
|---|---|
| double | getL1ByParam(java.lang.String paramName)Get the L1 coefficient for the given parameter. | 
| double | getL2ByParam(java.lang.String paramName)Get the L2 coefficient for the given parameter. | 
| double | getLearningRateByParam(java.lang.String paramName)Get the (initial) learning rate coefficient for the given parameter. | 
| InputType | getOutputType(int layerIndex,
             InputType inputType)For a given type of input to this layer, what is the type of the output? | 
| InputPreProcessor | getPreProcessorForInputType(InputType inputType)For the given type of input to this layer, what preprocessor (if any) is required? Returns null if no preprocessor is required, otherwise returns an appropriate InputPreProcessorfor this layer, such as aCnnToFeedForwardPreProcessor | 
| ParamInitializer | initializer() | 
| Layer | instantiate(NeuralNetConfiguration conf,
           java.util.Collection<IterationListener> iterationListeners,
           int layerIndex,
           org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
           boolean initializeParams) | 
| void | setNIn(InputType inputType,
      boolean override)Set the nIn value (number of inputs, or input depth for CNNs) based on the given input type | 
clone, getUpdaterByParam, resetLayerDefaultConfigpublic Layer instantiate(NeuralNetConfiguration conf, java.util.Collection<IterationListener> iterationListeners, int layerIndex, org.nd4j.linalg.api.ndarray.INDArray layerParamsView, boolean initializeParams)
instantiate in class Layerpublic ParamInitializer initializer()
initializer in class Layerpublic InputType getOutputType(int layerIndex, InputType inputType)
LayergetOutputType in class LayerlayerIndex - Index of the layerinputType - Type of input for the layerpublic void setNIn(InputType inputType, boolean override)
Layerpublic InputPreProcessor getPreProcessorForInputType(InputType inputType)
LayerInputPreProcessor
 for this layer, such as a CnnToFeedForwardPreProcessorgetPreProcessorForInputType in class LayerinputType - InputType to this layerpublic double getL1ByParam(java.lang.String paramName)
LayergetL1ByParam in class LayerparamName - Parameter namepublic double getL2ByParam(java.lang.String paramName)
LayergetL2ByParam in class LayerparamName - Parameter namepublic double getLearningRateByParam(java.lang.String paramName)
LayergetLearningRateByParam in class LayerparamName - Parameter name