public class Convolution1DLayer extends ConvolutionLayer
Layer.TrainingMode, Layer.TypeconvolutionMode, helper, logconf, dropoutApplied, dropoutMask, gradient, gradientsFlattened, gradientViews, index, input, iterationListeners, maskArray, maskState, optimizer, params, paramsFlattened, score, solver| Constructor and Description |
|---|
Convolution1DLayer(NeuralNetConfiguration conf) |
Convolution1DLayer(NeuralNetConfiguration conf,
org.nd4j.linalg.api.ndarray.INDArray input) |
| Modifier and Type | Method and Description |
|---|---|
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon)
Calculate the gradient relative to the error in the next layer
|
org.nd4j.linalg.api.ndarray.INDArray |
preOutput(boolean training) |
protected org.nd4j.linalg.api.ndarray.INDArray |
preOutput4d(boolean training)
preOutput4d: Used so that ConvolutionLayer subclasses (such as Convolution1DLayer) can maintain their standard
non-4d preOutput method, while overriding this to return 4d activations (for use in backprop) without modifying
the public API
|
activate, calcGradient, calcL1, calcL2, fit, isPretrainLayer, merge, params, setParams, transpose, typeaccumulateScore, activate, activate, activate, activate, activate, activationMean, applyDropOutIfNecessary, applyLearningRateScoreDecay, applyMask, batchSize, clear, clone, computeGradientAndScore, conf, createGradient, derivativeActivation, error, feedForwardMaskArray, fit, getIndex, getInput, getInputMiniBatchSize, getListeners, getMaskArray, getOptimizer, getParam, gradient, gradientAndScore, init, initParams, input, iterate, layerConf, layerNameAndIndex, numParams, numParams, paramTable, paramTable, preOutput, preOutput, preOutput, score, setBackpropGradientsViewArray, setConf, setIndex, setInput, setInputMiniBatchSize, setListeners, setListeners, setMaskArray, setParam, setParams, setParamsViewArray, setParamTable, setScoreWithZ, toString, update, update, validateInputpublic Convolution1DLayer(NeuralNetConfiguration conf)
public Convolution1DLayer(NeuralNetConfiguration conf, org.nd4j.linalg.api.ndarray.INDArray input)
public Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon)
LayerbackpropGradient in interface LayerbackpropGradient in class ConvolutionLayerepsilon - w^(L+1)*delta^(L+1). Or, equiv: dC/da, i.e., (dC/dz)*(dz/da) = dC/da, where C
is cost function a=sigma(z) is activation.protected org.nd4j.linalg.api.ndarray.INDArray preOutput4d(boolean training)
ConvolutionLayerpreOutput4d in class ConvolutionLayerpublic org.nd4j.linalg.api.ndarray.INDArray preOutput(boolean training)
preOutput in class ConvolutionLayer