public class AutoEncoder extends BasePretrainNetwork<AutoEncoder>
Layer.TrainingMode, Layer.TypetrainingListenersconf, dropoutApplied, dropoutMask, gradient, gradientsFlattened, gradientViews, index, input, iterationListeners, maskArray, maskState, optimizer, params, paramsFlattened, score, solver| Constructor and Description |
|---|
AutoEncoder(NeuralNetConfiguration conf) |
AutoEncoder(NeuralNetConfiguration conf,
org.nd4j.linalg.api.ndarray.INDArray input) |
| Modifier and Type | Method and Description |
|---|---|
org.nd4j.linalg.api.ndarray.INDArray |
activate()
Trigger an activation with the last specified input
|
org.nd4j.linalg.api.ndarray.INDArray |
activate(boolean training)
Trigger an activation with the last specified input
|
org.nd4j.linalg.api.ndarray.INDArray |
activate(org.nd4j.linalg.api.ndarray.INDArray input)
Initialize the layer with the given input
and return the activation for this layer
given this input
|
org.nd4j.linalg.api.ndarray.INDArray |
activate(org.nd4j.linalg.api.ndarray.INDArray input,
boolean training)
Initialize the layer with the given input
and return the activation for this layer
given this input
|
void |
computeGradientAndScore()
Update the score
|
org.nd4j.linalg.api.ndarray.INDArray |
decode(org.nd4j.linalg.api.ndarray.INDArray y) |
org.nd4j.linalg.api.ndarray.INDArray |
encode(org.nd4j.linalg.api.ndarray.INDArray v,
boolean training) |
boolean |
isPretrainLayer()
Returns true if the layer can be trained in an unsupervised/pretrain manner (VAE, RBMs etc)
|
Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray> |
sampleHiddenGivenVisible(org.nd4j.linalg.api.ndarray.INDArray v)
Sample the hidden distribution given the visible
|
Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray> |
sampleVisibleGivenHidden(org.nd4j.linalg.api.ndarray.INDArray h)
Sample the visible distribution given the hidden
|
backpropGradient, calcL1, calcL2, createGradient, getCorruptedInput, numParams, numParams, params, paramTable, setListeners, setListeners, setParams, setScoreWithZaccumulateScore, activate, activate, activationMean, applyDropOutIfNecessary, applyLearningRateScoreDecay, applyMask, batchSize, calcGradient, clear, clone, conf, createGradient, derivativeActivation, error, feedForwardMaskArray, fit, fit, getIndex, getInput, getInputMiniBatchSize, getListeners, getMaskArray, getOptimizer, getParam, gradient, gradientAndScore, init, initParams, input, iterate, layerConf, layerNameAndIndex, merge, paramTable, preOutput, preOutput, preOutput, preOutput, score, setBackpropGradientsViewArray, setConf, setIndex, setInput, setInputMiniBatchSize, setMaskArray, setParam, setParams, setParamsViewArray, setParamTable, toString, transpose, type, update, update, validateInputpublic AutoEncoder(NeuralNetConfiguration conf)
public AutoEncoder(NeuralNetConfiguration conf, org.nd4j.linalg.api.ndarray.INDArray input)
public Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray> sampleHiddenGivenVisible(org.nd4j.linalg.api.ndarray.INDArray v)
BasePretrainNetworksampleHiddenGivenVisible in class BasePretrainNetwork<AutoEncoder>v - the visible to sample frompublic Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray> sampleVisibleGivenHidden(org.nd4j.linalg.api.ndarray.INDArray h)
BasePretrainNetworksampleVisibleGivenHidden in class BasePretrainNetwork<AutoEncoder>h - the hidden to sample frompublic org.nd4j.linalg.api.ndarray.INDArray encode(org.nd4j.linalg.api.ndarray.INDArray v,
boolean training)
public org.nd4j.linalg.api.ndarray.INDArray decode(org.nd4j.linalg.api.ndarray.INDArray y)
public org.nd4j.linalg.api.ndarray.INDArray activate(org.nd4j.linalg.api.ndarray.INDArray input,
boolean training)
Layeractivate in interface Layeractivate in class BaseLayer<AutoEncoder>input - the input to usetraining - train or test modepublic org.nd4j.linalg.api.ndarray.INDArray activate(org.nd4j.linalg.api.ndarray.INDArray input)
Layeractivate in interface Layeractivate in class BaseLayer<AutoEncoder>input - the input to usepublic boolean isPretrainLayer()
Layerpublic org.nd4j.linalg.api.ndarray.INDArray activate(boolean training)
Layeractivate in interface Layeractivate in class BaseLayer<AutoEncoder>training - training or test modepublic org.nd4j.linalg.api.ndarray.INDArray activate()
Layeractivate in interface Layeractivate in class BaseLayer<AutoEncoder>public void computeGradientAndScore()
ModelcomputeGradientAndScore in interface ModelcomputeGradientAndScore in class BaseLayer<AutoEncoder>