public class DenseLayer extends BaseLayer<DenseLayer>
Layer.TrainingMode, Layer.Type
conf, dropoutApplied, dropoutMask, gradient, gradientsFlattened, gradientViews, index, input, iterationListeners, maskArray, maskState, optimizer, params, paramsFlattened, score, solver
Constructor and Description |
---|
DenseLayer(NeuralNetConfiguration conf) |
DenseLayer(NeuralNetConfiguration conf,
org.nd4j.linalg.api.ndarray.INDArray input) |
Modifier and Type | Method and Description |
---|---|
void |
fit(org.nd4j.linalg.api.ndarray.INDArray input)
Fit the model to the given data
|
boolean |
isPretrainLayer()
Returns true if the layer can be trained in an unsupervised/pretrain manner (VAE, RBMs etc)
|
accumulateScore, activate, activate, activate, activate, activate, activate, activationMean, applyDropOutIfNecessary, applyLearningRateScoreDecay, applyMask, backpropGradient, batchSize, calcGradient, calcL1, calcL2, clear, clone, computeGradientAndScore, conf, createGradient, derivativeActivation, error, feedForwardMaskArray, fit, getIndex, getInput, getInputMiniBatchSize, getListeners, getMaskArray, getOptimizer, getParam, gradient, gradientAndScore, init, initParams, input, iterate, layerConf, layerNameAndIndex, merge, numParams, numParams, params, paramTable, paramTable, preOutput, preOutput, preOutput, preOutput, score, setBackpropGradientsViewArray, setConf, setIndex, setInput, setInputMiniBatchSize, setListeners, setListeners, setMaskArray, setParam, setParams, setParams, setParamsViewArray, setParamTable, setScoreWithZ, toString, transpose, type, update, update, validateInput
public DenseLayer(NeuralNetConfiguration conf)
public DenseLayer(NeuralNetConfiguration conf, org.nd4j.linalg.api.ndarray.INDArray input)
public void fit(org.nd4j.linalg.api.ndarray.INDArray input)
Model
fit
in interface Model
fit
in class BaseLayer<DenseLayer>
input
- the data to fit the model topublic boolean isPretrainLayer()
Layer