public class EmbeddingLayer extends BaseLayer<EmbeddingLayer>
Layer.TrainingMode, Layer.Type
conf, dropoutApplied, dropoutMask, gradient, gradientsFlattened, gradientViews, index, input, iterationListeners, maskArray, maskState, optimizer, params, paramsFlattened, score, solver
Constructor and Description |
---|
EmbeddingLayer(NeuralNetConfiguration conf) |
Modifier and Type | Method and Description |
---|---|
org.nd4j.linalg.api.ndarray.INDArray |
activate(boolean training)
Trigger an activation with the last specified input
|
protected void |
applyDropOutIfNecessary(boolean training) |
Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon)
Calculate the gradient relative to the error in the next layer
|
boolean |
isPretrainLayer()
Returns true if the layer can be trained in an unsupervised/pretrain manner (VAE, RBMs etc)
|
org.nd4j.linalg.api.ndarray.INDArray |
preOutput(boolean training) |
accumulateScore, activate, activate, activate, activate, activate, activationMean, applyLearningRateScoreDecay, applyMask, batchSize, calcGradient, calcL1, calcL2, clear, clone, computeGradientAndScore, conf, createGradient, derivativeActivation, error, feedForwardMaskArray, fit, fit, getIndex, getInput, getInputMiniBatchSize, getListeners, getMaskArray, getOptimizer, getParam, gradient, gradientAndScore, init, initParams, input, iterate, layerConf, layerNameAndIndex, merge, numParams, numParams, params, paramTable, paramTable, preOutput, preOutput, preOutput, score, setBackpropGradientsViewArray, setConf, setIndex, setInput, setInputMiniBatchSize, setListeners, setListeners, setMaskArray, setParam, setParams, setParams, setParamsViewArray, setParamTable, setScoreWithZ, toString, transpose, type, update, update, validateInput
public EmbeddingLayer(NeuralNetConfiguration conf)
public Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon)
Layer
backpropGradient
in interface Layer
backpropGradient
in class BaseLayer<EmbeddingLayer>
epsilon
- w^(L+1)*delta^(L+1). Or, equiv: dC/da, i.e., (dC/dz)*(dz/da) = dC/da, where C
is cost function a=sigma(z) is activation.public org.nd4j.linalg.api.ndarray.INDArray preOutput(boolean training)
preOutput
in class BaseLayer<EmbeddingLayer>
public org.nd4j.linalg.api.ndarray.INDArray activate(boolean training)
Layer
activate
in interface Layer
activate
in class BaseLayer<EmbeddingLayer>
training
- training or test modepublic boolean isPretrainLayer()
Layer
protected void applyDropOutIfNecessary(boolean training)
applyDropOutIfNecessary
in class BaseLayer<EmbeddingLayer>