public class Tsne
extends java.lang.Object
Modifier and Type | Class and Description |
---|---|
static class |
Tsne.Builder |
Modifier and Type | Field and Description |
---|---|
protected org.nd4j.linalg.learning.AdaGrad |
adaGrad |
protected double |
finalMomentum |
protected double |
initialMomentum |
protected double |
learningRate |
protected static org.slf4j.Logger |
logger |
protected int |
maxIter |
protected double |
minGain |
protected double |
momentum |
protected boolean |
normalize |
protected double |
perplexity |
protected double |
realMin |
protected int |
stopLyingIteration |
protected int |
switchMomentumIteration |
protected double |
tolerance |
protected boolean |
useAdaGrad |
protected boolean |
usePca |
protected org.nd4j.linalg.api.ndarray.INDArray |
Y |
Constructor and Description |
---|
Tsne(int maxIter,
double realMin,
double initialMomentum,
double finalMomentum,
double minGain,
double momentum,
int switchMomentumIteration,
boolean normalize,
boolean usePca,
int stopLyingIteration,
double tolerance,
double learningRate,
boolean useAdaGrad,
double perplexity) |
Modifier and Type | Method and Description |
---|---|
org.nd4j.linalg.api.ndarray.INDArray |
calculate(org.nd4j.linalg.api.ndarray.INDArray X,
int targetDimensions,
double perplexity) |
org.nd4j.linalg.api.ndarray.INDArray |
diag(org.nd4j.linalg.api.ndarray.INDArray ds) |
Pair<java.lang.Double,org.nd4j.linalg.api.ndarray.INDArray> |
hBeta(org.nd4j.linalg.api.ndarray.INDArray d,
double beta)
Computes a gaussian kernel
given a vector of squared distance distances
|
protected void |
init() |
void |
plot(org.nd4j.linalg.api.ndarray.INDArray matrix,
int nDims,
java.util.List<java.lang.String> labels,
java.lang.String path) |
protected int maxIter
protected double realMin
protected double initialMomentum
protected double finalMomentum
protected double minGain
protected double momentum
protected int switchMomentumIteration
protected boolean normalize
protected boolean usePca
protected int stopLyingIteration
protected double tolerance
protected double learningRate
protected org.nd4j.linalg.learning.AdaGrad adaGrad
protected boolean useAdaGrad
protected double perplexity
protected org.nd4j.linalg.api.ndarray.INDArray Y
protected static final org.slf4j.Logger logger
public Tsne(int maxIter, double realMin, double initialMomentum, double finalMomentum, double minGain, double momentum, int switchMomentumIteration, boolean normalize, boolean usePca, int stopLyingIteration, double tolerance, double learningRate, boolean useAdaGrad, double perplexity)
protected void init()
public org.nd4j.linalg.api.ndarray.INDArray calculate(org.nd4j.linalg.api.ndarray.INDArray X, int targetDimensions, double perplexity)
public org.nd4j.linalg.api.ndarray.INDArray diag(org.nd4j.linalg.api.ndarray.INDArray ds)
public void plot(org.nd4j.linalg.api.ndarray.INDArray matrix, int nDims, java.util.List<java.lang.String> labels, java.lang.String path) throws java.io.IOException
java.io.IOException
public Pair<java.lang.Double,org.nd4j.linalg.api.ndarray.INDArray> hBeta(org.nd4j.linalg.api.ndarray.INDArray d, double beta)
d
- the databeta
-