public abstract class BaseStatsListener extends java.lang.Object implements RoutingIterationListener
| Modifier and Type | Field and Description |
|---|---|
static java.lang.String |
TYPE_ID |
| Constructor and Description |
|---|
BaseStatsListener(StatsStorageRouter router)
Create a StatsListener with network information collected at every iteration.
|
BaseStatsListener(StatsStorageRouter router,
int listenerFrequency)
Create a StatsListener with network information collected every n >= 1 time steps
|
BaseStatsListener(StatsStorageRouter router,
StatsInitializationConfiguration initConfig,
StatsUpdateConfiguration updateConfig,
java.lang.String sessionID,
java.lang.String workerID) |
| Modifier and Type | Method and Description |
|---|---|
abstract BaseStatsListener |
clone() |
StatsInitializationConfiguration |
getInitConfig() |
abstract StatsInitializationReport |
getNewInitializationReport() |
abstract StatsReport |
getNewStatsReport() |
abstract StorageMetaData |
getNewStorageMetaData(long initTime,
java.lang.String sessionID,
java.lang.String workerID) |
java.lang.String |
getSessionID() |
StatsStorageRouter |
getStorageRouter() |
StatsUpdateConfiguration |
getUpdateConfig() |
java.lang.String |
getWorkerID() |
void |
invoke()
Change invoke to true
|
boolean |
invoked()
Get if listener invoked
|
void |
iterationDone(Model model,
int iteration)
Event listener for each iteration
|
void |
onBackwardPass(Model model)
Called once per iteration (backward pass) after gradients have been calculated, and updated
Gradients are available via
Model.gradient(). |
void |
onEpochEnd(Model model)
Called once at the end of each epoch, when using methods such as
MultiLayerNetwork.fit(DataSetIterator),
ComputationGraph.fit(DataSetIterator) or ComputationGraph.fit(MultiDataSetIterator) |
void |
onEpochStart(Model model)
Called once at the start of each epoch, when using methods such as
MultiLayerNetwork.fit(DataSetIterator),
ComputationGraph.fit(DataSetIterator) or ComputationGraph.fit(MultiDataSetIterator) |
void |
onForwardPass(Model model,
java.util.List<org.nd4j.linalg.api.ndarray.INDArray> activations)
Called once per iteration (forward pass) for activations (usually for a
MultiLayerNetwork),
only at training time |
void |
onForwardPass(Model model,
java.util.Map<java.lang.String,org.nd4j.linalg.api.ndarray.INDArray> activations)
Called once per iteration (forward pass) for activations (usually for a
ComputationGraph),
only at training time |
void |
onGradientCalculation(Model model)
Called once per iteration (backward pass) before the gradients are updated
Gradients are available via
Model.gradient(). |
void |
setSessionID(java.lang.String sessionID) |
void |
setStorageRouter(StatsStorageRouter router) |
void |
setUpdateConfig(StatsUpdateConfiguration newConfig) |
void |
setWorkerID(java.lang.String workerID) |
public static final java.lang.String TYPE_ID
public BaseStatsListener(StatsStorageRouter router)
#StatsListener(StatsStorageRouter, int)
with listenerFrequency == 1router - Where/how to store the calculated stats. For example, InMemoryStatsStorage or
FileStatsStoragepublic BaseStatsListener(StatsStorageRouter router, int listenerFrequency)
router - Where/how to store the calculated stats. For example, InMemoryStatsStorage or
FileStatsStoragelistenerFrequency - Frequency with which to collect stats informationpublic BaseStatsListener(StatsStorageRouter router, StatsInitializationConfiguration initConfig, StatsUpdateConfiguration updateConfig, java.lang.String sessionID, java.lang.String workerID)
public abstract StatsInitializationReport getNewInitializationReport()
public abstract StatsReport getNewStatsReport()
public abstract StorageMetaData getNewStorageMetaData(long initTime, java.lang.String sessionID, java.lang.String workerID)
public StatsInitializationConfiguration getInitConfig()
public StatsUpdateConfiguration getUpdateConfig()
public void setUpdateConfig(StatsUpdateConfiguration newConfig)
public void setStorageRouter(StatsStorageRouter router)
setStorageRouter in interface RoutingIterationListenerpublic StatsStorageRouter getStorageRouter()
getStorageRouter in interface RoutingIterationListenerpublic void setWorkerID(java.lang.String workerID)
setWorkerID in interface RoutingIterationListenerpublic java.lang.String getWorkerID()
getWorkerID in interface RoutingIterationListenerpublic void setSessionID(java.lang.String sessionID)
setSessionID in interface RoutingIterationListenerpublic java.lang.String getSessionID()
getSessionID in interface RoutingIterationListenerpublic boolean invoked()
IterationListenerinvoked in interface IterationListenerpublic void invoke()
IterationListenerinvoke in interface IterationListenerpublic void onEpochStart(Model model)
TrainingListenerMultiLayerNetwork.fit(DataSetIterator),
ComputationGraph.fit(DataSetIterator) or ComputationGraph.fit(MultiDataSetIterator)onEpochStart in interface TrainingListenerpublic void onEpochEnd(Model model)
TrainingListenerMultiLayerNetwork.fit(DataSetIterator),
ComputationGraph.fit(DataSetIterator) or ComputationGraph.fit(MultiDataSetIterator)onEpochEnd in interface TrainingListenerpublic void onForwardPass(Model model, java.util.List<org.nd4j.linalg.api.ndarray.INDArray> activations)
TrainingListenerMultiLayerNetwork),
only at training timeonForwardPass in interface TrainingListenermodel - Modelactivations - Layer activations (including input)public void onForwardPass(Model model, java.util.Map<java.lang.String,org.nd4j.linalg.api.ndarray.INDArray> activations)
TrainingListenerComputationGraph),
only at training timeonForwardPass in interface TrainingListenermodel - Modelactivations - Layer activations (including input)public void onGradientCalculation(Model model)
TrainingListenerModel.gradient().
Note that gradients will likely be updated in-place - thus they should be copied or processed synchronously
in this method.
For updates (gradients post learning rate/momentum/rmsprop etc) see TrainingListener.onBackwardPass(Model)
onGradientCalculation in interface TrainingListenermodel - Modelpublic void onBackwardPass(Model model)
TrainingListenerModel.gradient().
Unlike TrainingListener.onGradientCalculation(Model) the gradients at this point will be post-update, rather than
raw (pre-update) gradients at that method call.
onBackwardPass in interface TrainingListenermodel - Modelpublic void iterationDone(Model model, int iteration)
IterationListeneriterationDone in interface IterationListenermodel - the model iteratingiteration - the iterationpublic abstract BaseStatsListener clone()
clone in interface RoutingIterationListenerclone in class java.lang.Object