- f1(Integer) - Method in class org.deeplearning4j.eval.Evaluation
-
Calculate f1 score for a given class
- f1() - Method in class org.deeplearning4j.eval.Evaluation
-
TP: true positive
FP: False Positive
FN: False Negative
F1 score: 2 * TP / (2TP + FP + FN)
- f1(int) - Method in class org.deeplearning4j.eval.EvaluationBinary
-
Get the F1 score for the specified output
- f1Score(DataSet) - Method in interface org.deeplearning4j.nn.api.Classifier
-
Sets the input and labels and returns a score for the prediction
wrt true labels
- f1Score(INDArray, INDArray) - Method in interface org.deeplearning4j.nn.api.Classifier
-
Returns the f1 score for the given examples.
- f1Score(DataSet) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
Sets the input and labels and returns a score for the prediction
wrt true labels
- f1Score(INDArray, INDArray) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
Returns the f1 score for the given examples.
- f1Score(DataSet) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
Sets the input and labels and returns a score for the prediction
wrt true labels
- f1Score(INDArray, INDArray) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
Returns the f1 score for the given examples.
- f1Score(INDArray, INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer
-
Returns the f1 score for the given examples.
- f1Score(DataSet) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Sets the input and labels and returns a score for the prediction
wrt true labels
- f1Score(INDArray, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Sets the input and labels and returns a score for the prediction
wrt true labels
- fa - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
-
- factorial(double) - Static method in class org.deeplearning4j.util.MathUtils
-
This will return the factorial of the given number n.
- Factory<T> - Interface in org.deeplearning4j.berkeley
-
- Factory.DefaultFactory<T> - Class in org.deeplearning4j.berkeley
-
- FALLBACK_LANGUAGE - Static variable in class org.deeplearning4j.ui.i18n.DefaultI18N
-
- falseAlarmRate() - Method in class org.deeplearning4j.eval.Evaluation
-
False Alarm Rate (FAR) reflects rate of misclassified to classified records
http://ro.ecu.edu.au/cgi/viewcontent.cgi?article=1058&context=isw
- falseNegativeRate(Integer) - Method in class org.deeplearning4j.eval.Evaluation
-
Returns the false negative rate for a given label
- falseNegativeRate(Integer, double) - Method in class org.deeplearning4j.eval.Evaluation
-
Returns the false negative rate for a given label
- falseNegativeRate() - Method in class org.deeplearning4j.eval.Evaluation
-
False negative rate based on guesses so far
Takes into account all known classes and outputs average fnr across all of them
- falseNegatives - Variable in class org.deeplearning4j.eval.Evaluation
-
- falseNegatives() - Method in class org.deeplearning4j.eval.Evaluation
-
False negatives: correctly rejected
- falseNegatives(int) - Method in class org.deeplearning4j.eval.EvaluationBinary
-
Get the false negatives count for the specified output
- falsePositiveRate(Integer) - Method in class org.deeplearning4j.eval.Evaluation
-
Returns the false positive rate for a given label
- falsePositiveRate(Integer, double) - Method in class org.deeplearning4j.eval.Evaluation
-
Returns the false positive rate for a given label
- falsePositiveRate() - Method in class org.deeplearning4j.eval.Evaluation
-
False positive rate based on guesses so far
Takes into account all known classes and outputs average fpr across all of them
- falsePositives - Variable in class org.deeplearning4j.eval.Evaluation
-
- falsePositives() - Method in class org.deeplearning4j.eval.Evaluation
-
False positive: wrong guess
- falsePositives(int) - Method in class org.deeplearning4j.eval.EvaluationBinary
-
Get the false positives count for the specified output
- fanIn - Variable in class org.deeplearning4j.nn.weights.WeightInitUtilTest
-
- fanOut - Variable in class org.deeplearning4j.nn.weights.WeightInitUtilTest
-
- FEATURE_MAP_FILENAME - Static variable in class com.atilika.kuromoji.dict.TokenInfoDictionary
-
- FeatureInfoMap - Class in com.atilika.kuromoji.buffer
-
- FeatureInfoMap() - Constructor for class com.atilika.kuromoji.buffer.FeatureInfoMap
-
- featureInfos - Variable in class com.atilika.kuromoji.buffer.BufferEntry
-
- features - Variable in class com.atilika.kuromoji.buffer.BufferEntry
-
- features(List<String>) - Method in class com.atilika.kuromoji.dict.GenericDictionaryEntry.Builder
-
- featurize(MultiDataSet) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearningHelper
-
During training frozen vertices/layers can be treated as "featurizing" the input
The forward pass through these frozen layer/vertices can be done in advance and the dataset saved to disk to iterate
quickly on the smaller unfrozen part of the model
Currently does not support datasets with feature masks
- featurize(DataSet) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearningHelper
-
During training frozen vertices/layers can be treated as "featurizing" the input
The forward pass through these frozen layer/vertices can be done in advance and the dataset saved to disk to iterate
quickly on the smaller unfrozen part of the model
Currently does not support datasets with feature masks
- feedDataSet(DataSet) - Method in class org.deeplearning4j.parallelism.parameterserver.ParameterServerTrainer
-
- feedDataSet(DataSet) - Method in class org.deeplearning4j.parallelism.trainer.DefaultTrainer
-
- feedDataSet(DataSet) - Method in interface org.deeplearning4j.parallelism.trainer.Trainer
-
Train on a DataSet
- feedForward(int) - Static method in class org.deeplearning4j.nn.conf.inputs.InputType
-
InputType for feed forward network data
- feedForward(INDArray, boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Conduct forward pass using a single input array.
- feedForward(INDArray[], boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Conduct forward pass using an array of inputs
- feedForward() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Conduct forward pass using the stored inputs, at test time
- feedForward(boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Conduct forward pass using the stored inputs
- feedForward(INDArray, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Compute activations from input to output of the output layer
- feedForward(boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Compute activations from input to output of the output layer
- feedForward() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Compute activations from input to output of the output layer
- feedForward(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Compute activations from input to output of the output layer
- feedForward(INDArray, INDArray, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Compute the activations from the input to the output layer, given mask arrays (that may be null)
The masking arrays are used in situations such an one-to-many and many-to-one rucerrent neural network (RNN)
designs, as well as for supporting time series of varying lengths within the same minibatch for RNNs.
- FeedForwardLayer - Class in org.deeplearning4j.nn.conf.layers
-
Created by jeffreytang on 7/21/15.
- FeedForwardLayer(FeedForwardLayer.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.FeedForwardLayer
-
- FeedForwardLayer.Builder<T extends FeedForwardLayer.Builder<T>> - Class in org.deeplearning4j.nn.conf.layers
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in interface org.deeplearning4j.nn.api.Layer
-
Feed forward the input mask array, setting in in the layer as appropriate.
- feedForwardMaskArray(INDArray, MaskState, int) - Method in interface org.deeplearning4j.nn.conf.InputPreProcessor
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.BaseInputPreProcessor
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.CnnToFeedForwardPreProcessor
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.CnnToRnnPreProcessor
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.ComposableInputPreProcessor
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.custom.MyCustomPreprocessor
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToCnnPreProcessor
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToRnnPreProcessor
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.RnnToCnnPreProcessor
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.RnnToFeedForwardPreProcessor
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.layers.pooling.GlobalPoolingLayer
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.ElementWiseVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.InputVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.L2NormalizeVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.L2Vertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.MergeVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.PreprocessorVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.DuplicateToTimeSeriesVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.LastTimeStepVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.ScaleVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.StackVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.SubsetVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.UnstackVertex
-
- FeedForwardToCnnPreProcessor - Class in org.deeplearning4j.nn.conf.preprocessor
-
A preprocessor to allow CNN and standard feed-forward network layers to be used together.
For example, DenseLayer -> CNN
This does two things:
(a) Reshapes activations out of FeedFoward layer (which is 2D or 3D with shape
[numExamples, inputHeight*inputWidth*numChannels]) into 4d activations (with shape
[numExamples, numChannels, inputHeight, inputWidth]) suitable to feed into CNN layers.
(b) Reshapes 4d epsilons (weights*deltas) from CNN layer, with shape
[numExamples, numChannels, inputHeight, inputWidth]) into 2d epsilons (with shape
[numExamples, inputHeight*inputWidth*numChannels]) for use in feed forward layer
Note: numChannels is equivalent to depth or featureMaps referenced in different literature
- FeedForwardToCnnPreProcessor(int, int, int) - Constructor for class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToCnnPreProcessor
-
Reshape to a channels x rows x columns tensor
- FeedForwardToCnnPreProcessor(int, int) - Constructor for class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToCnnPreProcessor
-
- feedForwardToLayer(int, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Compute the activations from the input to the specified layer.
To compute activations for all layers, use feedForward(...) methods
Note: output list includes the original input.
- feedForwardToLayer(int, INDArray, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Compute the activations from the input to the specified layer.
To compute activations for all layers, use feedForward(...) methods
Note: output list includes the original input.
- feedForwardToLayer(int, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Compute the activations from the input to the specified layer, using the currently set input for the network.
To compute activations for all layers, use feedForward(...) methods
Note: output list includes the original input.
- FeedForwardToRnnPreProcessor - Class in org.deeplearning4j.nn.conf.preprocessor
-
A preprocessor to allow RNN and feed-forward network layers to be used together.
For example, DenseLayer -> GravesLSTM
This does two things:
(a) Reshapes activations out of FeedFoward layer (which is 2D with shape
[miniBatchSize*timeSeriesLength,layerSize]) into 3d activations (with shape
[miniBatchSize,layerSize,timeSeriesLength]) suitable to feed into RNN layers.
(b) Reshapes 3d epsilons (weights*deltas from RNN layer, with shape
[miniBatchSize,layerSize,timeSeriesLength]) into 2d epsilons (with shape
[miniBatchSize*timeSeriesLength,layerSize]) for use in feed forward layer
- FeedForwardToRnnPreProcessor() - Constructor for class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToRnnPreProcessor
-
- feedForwardWithKey(JavaPairRDD<K, INDArray[]>, int) - Method in class org.deeplearning4j.spark.impl.graph.SparkComputationGraph
-
Feed-forward the specified data, with the given keys.
- feedForwardWithKey(JavaPairRDD<K, INDArray>, int) - Method in class org.deeplearning4j.spark.impl.multilayer.SparkDl4jMultiLayer
-
Feed-forward the specified data, with the given keys.
- FeedForwardWithKeyFunction<K> - Class in org.deeplearning4j.spark.impl.multilayer.scoring
-
Function to feed-forward examples, and get the network output (for example, class probabilities).
- FeedForwardWithKeyFunction(Broadcast<INDArray>, Broadcast<String>, int) - Constructor for class org.deeplearning4j.spark.impl.multilayer.scoring.FeedForwardWithKeyFunction
-
- feedForwardWithKeySingle(JavaPairRDD<K, INDArray>, int) - Method in class org.deeplearning4j.spark.impl.graph.SparkComputationGraph
-
Feed-forward the specified data, with the given keys.
- feedMultiDataSet(MultiDataSet) - Method in class org.deeplearning4j.parallelism.parameterserver.ParameterServerTrainer
-
- feedMultiDataSet(MultiDataSet) - Method in class org.deeplearning4j.parallelism.trainer.DefaultTrainer
-
- feedMultiDataSet(MultiDataSet) - Method in interface org.deeplearning4j.parallelism.trainer.Trainer
-
Train on a MultiDataSet
- fetch(int) - Method in class org.deeplearning4j.datasets.fetchers.CurvesDataFetcher
-
Fetches the next dataset.
- fetch(int) - Method in class org.deeplearning4j.datasets.fetchers.IrisDataFetcher
-
- fetch(int) - Method in class org.deeplearning4j.datasets.fetchers.MnistDataFetcher
-
- fetch(int) - Method in interface org.deeplearning4j.datasets.iterator.DataSetFetcher
-
Deprecated.
Fetches the next dataset.
- fetch(int) - Method in class org.deeplearning4j.datasets.iterator.impl.MovingWindowDataSetFetcher
-
Fetches the next dataset.
- fetch(int) - Method in class org.deeplearning4j.models.word2vec.iterator.Word2VecDataFetcher
-
- fetcher - Variable in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
-
- fetchLabels(boolean) - Method in class org.deeplearning4j.models.word2vec.wordstore.VocabConstructor.Builder
-
Sets, if labels should be fetched, during vocab building
- fetchLabels - Variable in class org.deeplearning4j.spark.models.sequencevectors.functions.CountFunction
-
- fetchLabels - Variable in class org.deeplearning4j.spark.models.sequencevectors.functions.ExtraCountFunction
-
- fieldsPresent() - Method in class org.deeplearning4j.ui.stats.sbe.StaticInfoDecoder
-
- fieldsPresent() - Method in class org.deeplearning4j.ui.stats.sbe.StaticInfoEncoder
-
- fieldsPresent() - Method in class org.deeplearning4j.ui.stats.sbe.UpdateDecoder
-
- fieldsPresent() - Method in class org.deeplearning4j.ui.stats.sbe.UpdateEncoder
-
- fieldsPresentId() - Static method in class org.deeplearning4j.ui.stats.sbe.StaticInfoDecoder
-
- fieldsPresentId() - Static method in class org.deeplearning4j.ui.stats.sbe.UpdateDecoder
-
- fieldsPresentMetaAttribute(MetaAttribute) - Static method in class org.deeplearning4j.ui.stats.sbe.StaticInfoDecoder
-
- fieldsPresentMetaAttribute(MetaAttribute) - Static method in class org.deeplearning4j.ui.stats.sbe.UpdateDecoder
-
- file - Variable in class org.deeplearning4j.text.sentenceiterator.FileSentenceIterator
-
- file(File) - Method in class org.deeplearning4j.ui.storage.mapdb.MapDBStatsStorage.Builder
-
- FILE_DIR - Variable in class org.deeplearning4j.base.MnistFetcher
-
- FileDocumentIterator - Class in org.deeplearning4j.text.documentiterator
-
Iterate over files
- FileDocumentIterator(String) - Constructor for class org.deeplearning4j.text.documentiterator.FileDocumentIterator
-
- FileDocumentIterator(File) - Constructor for class org.deeplearning4j.text.documentiterator.FileDocumentIterator
-
- FileDocumentIteratorTest - Class in org.deeplearning4j.text.documentiterator
-
Created by fartovii on 09.11.15.
- FileDocumentIteratorTest() - Constructor for class org.deeplearning4j.text.documentiterator.FileDocumentIteratorTest
-
- fileIterator - Variable in class org.deeplearning4j.text.sentenceiterator.FileSentenceIterator
-
- FileLabelAwareIterator - Class in org.deeplearning4j.text.documentiterator
-
This is simple filesystem-based LabelAware iterator.
- FileLabelAwareIterator() - Constructor for class org.deeplearning4j.text.documentiterator.FileLabelAwareIterator
-
- FileLabelAwareIterator(List<File>, LabelsSource) - Constructor for class org.deeplearning4j.text.documentiterator.FileLabelAwareIterator
-
- FileLabelAwareIterator.Builder - Class in org.deeplearning4j.text.documentiterator
-
- FileLabelAwareIteratorTest - Class in org.deeplearning4j.text.documentiterator
-
Created by raver119 on 03.01.16.
- FileLabelAwareIteratorTest() - Constructor for class org.deeplearning4j.text.documentiterator.FileLabelAwareIteratorTest
-
- FileLabeledSentenceProvider - Class in org.deeplearning4j.iterator.provider
-
Iterate over a set of sentences/documents, where the sentences are to be loaded (as required) from the provided files.
- FileLabeledSentenceProvider(Map<String, List<File>>) - Constructor for class org.deeplearning4j.iterator.provider.FileLabeledSentenceProvider
-
- FileLabeledSentenceProvider(Map<String, List<File>>, Random) - Constructor for class org.deeplearning4j.iterator.provider.FileLabeledSentenceProvider
-
- FILENAME_AGGREGATE_TIME - Static variable in class org.deeplearning4j.spark.impl.paramavg.stats.ParameterAveragingTrainingMasterStats
-
- FILENAME_BROADCAST_CREATE - Static variable in class org.deeplearning4j.spark.impl.paramavg.stats.ParameterAveragingTrainingMasterStats
-
- FILENAME_BROADCAST_GET_STATS - Static variable in class org.deeplearning4j.spark.impl.paramavg.stats.ParameterAveragingTrainingWorkerStats
-
- FILENAME_COUNT_RDD_SIZE - Static variable in class org.deeplearning4j.spark.impl.paramavg.stats.ParameterAveragingTrainingMasterStats
-
- FILENAME_DATASET_GET_TIME_STATS - Static variable in class org.deeplearning4j.spark.api.stats.CommonSparkTrainingStats
-
- FILENAME_EXPORT_RDD_TIME - Static variable in class org.deeplearning4j.spark.impl.paramavg.stats.ParameterAveragingTrainingMasterStats
-
- FILENAME_FIT_STATS - Static variable in class org.deeplearning4j.spark.impl.paramavg.stats.ParameterAveragingTrainingWorkerStats
-
- FILENAME_FIT_TIME - Static variable in class org.deeplearning4j.spark.impl.paramavg.stats.ParameterAveragingTrainingMasterStats
-
- FILENAME_GET_INITIAL_MODEL_STATS - Static variable in class org.deeplearning4j.spark.api.stats.CommonSparkTrainingStats
-
- FILENAME_INIT_STATS - Static variable in class org.deeplearning4j.spark.impl.paramavg.stats.ParameterAveragingTrainingWorkerStats
-
- FILENAME_MAP_PARTITIONS_TIME - Static variable in class org.deeplearning4j.spark.impl.paramavg.stats.ParameterAveragingTrainingMasterStats
-
- FILENAME_PROCESS_MINIBATCH_TIME_STATS - Static variable in class org.deeplearning4j.spark.api.stats.CommonSparkTrainingStats
-
- FILENAME_PROCESS_PARAMS_TIME - Static variable in class org.deeplearning4j.spark.impl.paramavg.stats.ParameterAveragingTrainingMasterStats
-
- FILENAME_REPARTITION_STATS - Static variable in class org.deeplearning4j.spark.impl.paramavg.stats.ParameterAveragingTrainingMasterStats
-
- FILENAME_SPLIT_TIME - Static variable in class org.deeplearning4j.spark.impl.paramavg.stats.ParameterAveragingTrainingMasterStats
-
- FILENAME_TOTAL_TIME_STATS - Static variable in class org.deeplearning4j.spark.api.stats.CommonSparkTrainingStats
-
- fileNameClean(String) - Static method in class org.deeplearning4j.berkeley.StringUtils
-
Returns a "clean" version of the given filename in which spaces have
been converted to dashes and all non-alphaneumeric chars are underscores.
- FilenamesLabelAwareIterator - Class in org.deeplearning4j.text.documentiterator
-
This LabelAwareIterator scans folder for files, and returns them as LabelledDocuments.
- FilenamesLabelAwareIterator() - Constructor for class org.deeplearning4j.text.documentiterator.FilenamesLabelAwareIterator
-
- FilenamesLabelAwareIterator(List<File>, LabelsSource) - Constructor for class org.deeplearning4j.text.documentiterator.FilenamesLabelAwareIterator
-
- FilenamesLabelAwareIterator.Builder - Class in org.deeplearning4j.text.documentiterator
-
- FilenamesLabelAwareIteratorTest - Class in org.deeplearning4j.text.documentiterator
-
- FilenamesLabelAwareIteratorTest() - Constructor for class org.deeplearning4j.text.documentiterator.FilenamesLabelAwareIteratorTest
-
- FileOperations - Class in org.deeplearning4j.util
-
- FileResourceResolver - Class in com.atilika.kuromoji.util
-
- FileResourceResolver() - Constructor for class com.atilika.kuromoji.util.FileResourceResolver
-
- files - Variable in class org.deeplearning4j.text.documentiterator.FileLabelAwareIterator
-
- files - Variable in class org.deeplearning4j.text.documentiterator.FilenamesLabelAwareIterator
-
- FileSentenceIterator - Class in org.deeplearning4j.text.sentenceiterator
-
- FileSentenceIterator(SentencePreProcessor, File) - Constructor for class org.deeplearning4j.text.sentenceiterator.FileSentenceIterator
-
Takes a single file or directory
- FileSentenceIterator(File) - Constructor for class org.deeplearning4j.text.sentenceiterator.FileSentenceIterator
-
- FileStatsStorage - Class in org.deeplearning4j.ui.storage
-
A StatsStorage implementation that stores UI data in a file for persistence.
Can be used for multiple instances, and across multiple independent runs.
- FileStatsStorage(File) - Constructor for class org.deeplearning4j.ui.storage.FileStatsStorage
-
- fillDown(String, int) - Method in class org.deeplearning4j.util.StringGrid
-
- fillList(Iterator<? extends T>, List<T>) - Static method in class org.deeplearning4j.berkeley.Iterators
-
- fillList(Iterator<? extends T>) - Static method in class org.deeplearning4j.berkeley.Iterators
-
- fillQueue() - Method in class org.deeplearning4j.datasets.iterator.AbstractDataSetIterator
-
- Filter<T> - Interface in org.deeplearning4j.berkeley
-
Filters are boolean cooccurrences which accept or reject items.
- filter(Iterator<T>, Filter<T>) - Static method in class org.deeplearning4j.berkeley.Iterators
-
- filterBySimilarity(double, int, int) - Method in class org.deeplearning4j.util.StringGrid
-
- FilteredIterator(Filter<T>, Iterator<T>) - Constructor for class org.deeplearning4j.berkeley.Iterators.FilteredIterator
-
- FilteredIterator(Filter<T>, Iterable<T>) - Constructor for class org.deeplearning4j.berkeley.Iterators.FilteredIterator
-
- FilteredSequenceIterator<T extends SequenceElement> - Class in org.deeplearning4j.models.sequencevectors.iterators
-
This implementation of SequenceIterator passes each sequence through specified vocabulary, filtering out SequenceElements that are not available in Vocabulary.
- FilteredSequenceIterator(SequenceIterator<T>, VocabCache<T>) - Constructor for class org.deeplearning4j.models.sequencevectors.iterators.FilteredSequenceIterator
-
Creates Filtered SequenceIterator on top of another SequenceIterator and appropriate VocabCache instance
- filterMinWordAddVocab(Counter<String>) - Method in class org.deeplearning4j.spark.text.functions.TextPipeline
-
- filterResultsBy(Predicate<String>) - Method in class org.deeplearning4j.util.reflections.DL4JSubTypesScanner
-
- filterRowsByColumn(int, Collection<String>) - Method in class org.deeplearning4j.util.StringGrid
-
- filterVocab(AbstractCache<T>, int) - Method in class org.deeplearning4j.models.word2vec.wordstore.VocabConstructor
-
- finalize() - Method in class org.deeplearning4j.text.sentenceiterator.BasicLineIterator
-
- finalize() - Method in class org.deeplearning4j.text.sentenceiterator.PrefetchingSentenceIterator
-
Deprecated.
- finalMomentum - Variable in class org.deeplearning4j.plot.BarnesHutTsne
-
- finalMomentum - Variable in class org.deeplearning4j.plot.Tsne.Builder
-
- finalMomentum - Variable in class org.deeplearning4j.plot.Tsne
-
- finalNOut - Static variable in class org.deeplearning4j.gradientcheck.CNN1DGradientCheckTest
-
- finalProcessor - Variable in class org.deeplearning4j.streaming.routes.DL4jServeRouteBuilder
-
- find(String, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
-
Say whether this regular expression can be found inside
this String.
- findCreds() - Method in class org.deeplearning4j.aws.s3.BaseS3
-
- findHead(Tree) - Method in class org.deeplearning4j.text.corpora.treeparser.HeadWordFinder
-
Finds the bottom most head
- findHead2(Tree) - Method in class org.deeplearning4j.text.corpora.treeparser.HeadWordFinder
-
- findIndex(INDArray) - Method in class org.deeplearning4j.clustering.quadtree.QuadTree
-
Returns the cell of this element
- findNext(String, char, char, int, StringBuilder) - Static method in class org.deeplearning4j.util.StringUtils
-
Finds the first occurrence of the separator character ignoring the escaped
separators starting from the index.
- findUserDictionaryMatches(String) - Method in class com.atilika.kuromoji.dict.UserDictionary
-
Lookup words in text
- finetune() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Run SGD based on the given labels
- FineTuneConfiguration - Class in org.deeplearning4j.nn.transferlearning
-
Created by Alex on 21/02/2017.
- FineTuneConfiguration() - Constructor for class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- fineTuneConfiguration(FineTuneConfiguration) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.Builder
-
Fine tune configurations specified will overwrite the existing configuration if any
Usage example: specify a learning rate will set specified learning rate on all layers
Refer to the fineTuneConfiguration class for more details
- fineTuneConfiguration(FineTuneConfiguration) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
Set parameters to selectively override existing learning parameters
Usage eg.
- FineTuneConfiguration.Builder - Class in org.deeplearning4j.nn.transferlearning
-
- FingerPrintKeyer - Class in org.deeplearning4j.util
-
Copied from google refine:
takes the key and gets rid of all punctuation, transforms to lower case
and alphabetic sorts the words
- FingerPrintKeyer() - Constructor for class org.deeplearning4j.util.FingerPrintKeyer
-
- finish() - Method in interface org.deeplearning4j.models.embeddings.learning.ElementsLearningAlgorithm
-
- finish() - Method in class org.deeplearning4j.models.embeddings.learning.impl.elements.CBOW
-
- finish() - Method in class org.deeplearning4j.models.embeddings.learning.impl.elements.GloVe
-
- finish() - Method in class org.deeplearning4j.models.embeddings.learning.impl.elements.SkipGram
-
- finish() - Method in class org.deeplearning4j.models.embeddings.learning.impl.sequence.DBOW
-
- finish() - Method in class org.deeplearning4j.models.embeddings.learning.impl.sequence.DM
-
- finish() - Method in interface org.deeplearning4j.models.embeddings.learning.SequenceLearningAlgorithm
-
- finish() - Method in class org.deeplearning4j.models.glove.count.ASCIICoOccurrenceReader
-
- finish() - Method in class org.deeplearning4j.models.glove.count.ASCIICoOccurrenceWriter
-
- finish() - Method in class org.deeplearning4j.models.glove.count.BinaryCoOccurrenceReader
-
- finish() - Method in class org.deeplearning4j.models.glove.count.BinaryCoOccurrenceWriter
-
- finish() - Method in interface org.deeplearning4j.models.glove.count.CoOccurenceReader
-
- finish() - Method in interface org.deeplearning4j.models.glove.count.CoOccurrenceWriter
-
Implementations of this method should close everything they use, before eradication
- finish() - Method in class org.deeplearning4j.spark.models.sequencevectors.learning.elements.BaseSparkLearningAlgorithm
-
- finish() - Method in class org.deeplearning4j.spark.models.sequencevectors.learning.sequence.BaseSparkSequenceLearningAlgorithm
-
- finish() - Method in interface org.deeplearning4j.text.invertedindex.InvertedIndex
-
Finishes saving data
- finish() - Method in class org.deeplearning4j.text.sentenceiterator.AggregatingSentenceIterator
-
- finish() - Method in class org.deeplearning4j.text.sentenceiterator.BaseSentenceIterator
-
- finish() - Method in class org.deeplearning4j.text.sentenceiterator.BasicLineIterator
-
- finish() - Method in class org.deeplearning4j.text.sentenceiterator.BasicResultSetIterator
-
- finish() - Method in class org.deeplearning4j.text.sentenceiterator.labelaware.LabelAwareListSentenceIterator
-
Allows for any finishing (closing of input streams or the like)
- finish() - Method in class org.deeplearning4j.text.sentenceiterator.MutipleEpochsSentenceIterator
-
- finish() - Method in class org.deeplearning4j.text.sentenceiterator.PrefetchingSentenceIterator
-
Deprecated.
- finish() - Method in interface org.deeplearning4j.text.sentenceiterator.SentenceIterator
-
Allows for any finishing (closing of input streams or the like)
- finish() - Method in class org.deeplearning4j.text.sentenceiterator.StreamLineIterator
-
- finish() - Method in class org.deeplearning4j.text.sentenceiterator.SynchronizedSentenceIterator
-
- firstChild() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- FirstComparator() - Constructor for class org.deeplearning4j.berkeley.Pair.FirstComparator
-
- FirstIterationFunction - Class in org.deeplearning4j.spark.models.embeddings.word2vec
-
- FirstIterationFunction(Broadcast<Map<String, Object>>, Broadcast<double[]>, Broadcast<VocabCache<VocabWord>>) - Constructor for class org.deeplearning4j.spark.models.embeddings.word2vec.FirstIterationFunction
-
- FirstIterationFunctionAdapter - Class in org.deeplearning4j.spark.models.embeddings.word2vec
-
- FirstIterationFunctionAdapter(Broadcast<Map<String, Object>>, Broadcast<double[]>, Broadcast<VocabCache<VocabWord>>) - Constructor for class org.deeplearning4j.spark.models.embeddings.word2vec.FirstIterationFunctionAdapter
-
- fit() - Method in class org.deeplearning4j.bagofwords.vectorizer.BaseTextVectorizer
-
- fit() - Method in interface org.deeplearning4j.bagofwords.vectorizer.TextVectorizer
-
Train the model
- fit(DataSet) - Method in class org.deeplearning4j.earlystopping.trainer.BaseEarlyStoppingTrainer
-
- fit(MultiDataSet) - Method in class org.deeplearning4j.earlystopping.trainer.BaseEarlyStoppingTrainer
-
- fit() - Method in class org.deeplearning4j.earlystopping.trainer.BaseEarlyStoppingTrainer
-
- fit(DataSet) - Method in class org.deeplearning4j.earlystopping.trainer.EarlyStoppingGraphTrainer
-
- fit(MultiDataSet) - Method in class org.deeplearning4j.earlystopping.trainer.EarlyStoppingGraphTrainer
-
- fit(DataSet) - Method in class org.deeplearning4j.earlystopping.trainer.EarlyStoppingTrainer
-
- fit(MultiDataSet) - Method in class org.deeplearning4j.earlystopping.trainer.EarlyStoppingTrainer
-
- fit() - Method in interface org.deeplearning4j.earlystopping.trainer.IEarlyStoppingTrainer
-
Conduct early stopping training
- fit(IGraph<V, E>, int) - Method in class org.deeplearning4j.graph.models.deepwalk.DeepWalk
-
Fit the model, in parallel.
- fit(GraphWalkIteratorProvider<V>) - Method in class org.deeplearning4j.graph.models.deepwalk.DeepWalk
-
- fit(GraphWalkIterator<V>) - Method in class org.deeplearning4j.graph.models.deepwalk.DeepWalk
-
Fit the DeepWalk model using a single thread using a given GraphWalkIterator.
- fit(EntryPointFitParameters) - Method in class org.deeplearning4j.keras.DeepLearning4jEntryPoint
-
Performs fitting of the model which is referenced in the parameters according to learning parameters specified.
- fit() - Method in class org.deeplearning4j.models.glove.AbstractCoOccurrences
-
- fit() - Method in class org.deeplearning4j.models.paragraphvectors.ParagraphVectors
-
- fit() - Method in class org.deeplearning4j.models.sequencevectors.SequenceVectors
-
Starts training over
- fit(DataSetIterator) - Method in interface org.deeplearning4j.nn.api.Classifier
-
Train the model based on the datasetiterator
- fit(INDArray, INDArray) - Method in interface org.deeplearning4j.nn.api.Classifier
-
Fit the model
- fit(DataSet) - Method in interface org.deeplearning4j.nn.api.Classifier
-
Fit the model
- fit(INDArray, int[]) - Method in interface org.deeplearning4j.nn.api.Classifier
-
Fit the model
- fit() - Method in interface org.deeplearning4j.nn.api.Model
-
All models have a fit method
- fit(INDArray) - Method in interface org.deeplearning4j.nn.api.Model
-
Fit the model to the given data
- fit(DataSet) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Fit the ComputationGraph using a DataSet.
- fit(DataSetIterator) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Fit the ComputationGraph using a DataSetIterator.
- fit(MultiDataSet) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Fit the ComputationGraph using a MultiDataSet
- fit(MultiDataSetIterator) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Fit the ComputationGraph using a MultiDataSetIterator
- fit(INDArray[], INDArray[]) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Fit the ComputationGraph given arrays of inputs and labels.
- fit(INDArray[], INDArray[], INDArray[], INDArray[]) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Fit the ComputationGraph using the specified inputs and labels (and mask arrays)
- fit() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- fit(INDArray) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- fit(INDArray) - Method in class org.deeplearning4j.nn.layers.ActivationLayer
-
- fit() - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- fit(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- fit(DataSetIterator) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- fit(INDArray, INDArray) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
Fit the model
- fit(DataSet) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
Fit the model
- fit(INDArray, int[]) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
Fit the model
- fit(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
Fit the model to the given data
- fit(INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- fit() - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- fit(INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- fit(INDArray) - Method in class org.deeplearning4j.nn.layers.DropoutLayer
-
- fit(INDArray) - Method in class org.deeplearning4j.nn.layers.feedforward.dense.DenseLayer
-
- fit() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- fit(INDArray) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- fit(INDArray) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- fit(DataSetIterator) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- fit(INDArray, INDArray) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
Fit the model
- fit(DataSet) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
Fit the model
- fit(INDArray, int[]) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
Fit the model
- fit(INDArray) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- fit(INDArray) - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
-
- fit(INDArray) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- fit() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- fit(DataSetIterator) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- fit(INDArray, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Fit the model
- fit(INDArray, INDArray, INDArray, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Fit the model
- fit(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Fit the unsupervised model
- fit(DataSet) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Fit the model
- fit(INDArray, int[]) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Fit the model
- fit() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- fit() - Method in class org.deeplearning4j.parallelism.EarlyStoppingParallelTrainer
-
- fit(MultiDataSetIterator) - Method in class org.deeplearning4j.parallelism.ParallelWrapper
-
- fit(DataSetIterator) - Method in class org.deeplearning4j.parallelism.ParallelWrapper
-
This method takes DataSetIterator, and starts training over it by scheduling DataSets to different executors
- fit() - Method in class org.deeplearning4j.plot.BarnesHutTsne
-
- fit(INDArray) - Method in class org.deeplearning4j.plot.BarnesHutTsne
-
- fit(INDArray, int) - Method in class org.deeplearning4j.plot.BarnesHutTsne
-
- fit(JavaRDD<DataSet>) - Method in class org.deeplearning4j.spark.earlystopping.BaseSparkEarlyStoppingTrainer
-
- fit() - Method in class org.deeplearning4j.spark.earlystopping.BaseSparkEarlyStoppingTrainer
-
- fit(JavaRDD<DataSet>) - Method in class org.deeplearning4j.spark.earlystopping.SparkEarlyStoppingGraphTrainer
-
- fit(JavaRDD<DataSet>) - Method in class org.deeplearning4j.spark.earlystopping.SparkEarlyStoppingTrainer
-
- fit(RDD<DataSet>) - Method in class org.deeplearning4j.spark.impl.graph.SparkComputationGraph
-
Fit the ComputationGraph with the given data set
- fit(JavaRDD<DataSet>) - Method in class org.deeplearning4j.spark.impl.graph.SparkComputationGraph
-
Fit the ComputationGraph with the given data set
- fit(String) - Method in class org.deeplearning4j.spark.impl.graph.SparkComputationGraph
-
Fit the SparkComputationGraph network using a directory of serialized DataSet objects
The assumption here is that the directory contains a number of DataSet
objects, each serialized using
DataSet.save(OutputStream)
- fit(String, int) - Method in class org.deeplearning4j.spark.impl.graph.SparkComputationGraph
-
- fit(String, int, RecordReader) - Method in class org.deeplearning4j.spark.impl.layer.SparkDl4jLayer
-
Fit the layer based on the specified org.deeplearning4j.spark context text file
- fit(JavaSparkContext, JavaRDD<LabeledPoint>) - Method in class org.deeplearning4j.spark.impl.layer.SparkDl4jLayer
-
Fit the given rdd given the context.
- fit(RDD<DataSet>) - Method in class org.deeplearning4j.spark.impl.multilayer.SparkDl4jMultiLayer
-
Fit the DataSet RDD.
- fit(JavaRDD<DataSet>) - Method in class org.deeplearning4j.spark.impl.multilayer.SparkDl4jMultiLayer
-
Fit the DataSet RDD
- fit(String) - Method in class org.deeplearning4j.spark.impl.multilayer.SparkDl4jMultiLayer
-
Fit the SparkDl4jMultiLayer network using a directory of serialized DataSet objects
The assumption here is that the directory contains a number of DataSet
objects, each serialized using
DataSet.save(OutputStream)
- fit(String, int) - Method in class org.deeplearning4j.spark.impl.multilayer.SparkDl4jMultiLayer
-
- fit() - Method in class org.deeplearning4j.spark.models.sequencevectors.SparkSequenceVectors
-
Deprecated.
- fit() - Method in class org.deeplearning4j.spark.models.word2vec.SparkWord2Vec
-
Deprecated.
- fitContinuousLabeledPoint(JavaRDD<LabeledPoint>) - Method in class org.deeplearning4j.spark.impl.multilayer.SparkDl4jMultiLayer
-
Fits a MultiLayerNetwork using Spark MLLib LabeledPoint instances
This will convert labeled points that have continuous labels used for regression to the internal
DL4J data format and train the model on that
- fitDataSet(JavaRDD<DataSet>) - Method in class org.deeplearning4j.spark.impl.layer.SparkDl4jLayer
-
Fit a java rdd of dataset
- fitFeaturized(MultiDataSetIterator) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearningHelper
-
Fit from a featurized dataset.
- fitFeaturized(MultiDataSet) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearningHelper
-
- fitFeaturized(DataSet) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearningHelper
-
- fitFeaturized(DataSetIterator) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearningHelper
-
- fitLabeledPoint(JavaRDD<LabeledPoint>) - Method in class org.deeplearning4j.spark.impl.multilayer.SparkDl4jMultiLayer
-
Fit a MultiLayerNetwork using Spark MLLib LabeledPoint instances.
- fitLabelledDocuments(JavaRDD<LabelledDocument>) - Method in class org.deeplearning4j.spark.models.paragraphvectors.SparkParagraphVectors
-
This method builds ParagraphVectors model, expecting JavaRDD.
- fitLists(JavaRDD<List<T>>) - Method in class org.deeplearning4j.spark.models.sequencevectors.SparkSequenceVectors
-
Utility method.
- fitMulti(JavaRDD<MultiDataSet>) - Method in class org.deeplearning4j.spark.earlystopping.BaseSparkEarlyStoppingTrainer
-
- fitMulti(JavaRDD<MultiDataSet>) - Method in class org.deeplearning4j.spark.earlystopping.SparkEarlyStoppingGraphTrainer
-
- fitMulti(JavaRDD<MultiDataSet>) - Method in class org.deeplearning4j.spark.earlystopping.SparkEarlyStoppingTrainer
-
- fitMultiDataSet(RDD<MultiDataSet>) - Method in class org.deeplearning4j.spark.impl.graph.SparkComputationGraph
-
Fit the ComputationGraph with the given data set
- fitMultiDataSet(JavaRDD<MultiDataSet>) - Method in class org.deeplearning4j.spark.impl.graph.SparkComputationGraph
-
Fit the ComputationGraph with the given data set
- fitMultiDataSet(String) - Method in class org.deeplearning4j.spark.impl.graph.SparkComputationGraph
-
Fit the SparkComputationGraph network using a directory of serialized MultiDataSet objects
The assumption here is that the directory contains a number of serialized MultiDataSet
objects
- fitMultiDataSet(String, int) - Method in class org.deeplearning4j.spark.impl.graph.SparkComputationGraph
-
- fitMultipleFiles(JavaPairRDD<String, String>) - Method in class org.deeplearning4j.spark.models.paragraphvectors.SparkParagraphVectors
-
This method builds ParagraphVectors model, expecting JavaPairRDD with key as label, and value as document-in-a-string.
- fitPaths(JavaRDD<String>) - Method in class org.deeplearning4j.spark.impl.graph.SparkComputationGraph
-
Fit the network using a list of paths for serialized DataSet objects.
- fitPaths(JavaRDD<String>) - Method in class org.deeplearning4j.spark.impl.multilayer.SparkDl4jMultiLayer
-
Fit the network using a list of paths for serialized DataSet objects.
- fitPathsMultiDataSet(JavaRDD<String>) - Method in class org.deeplearning4j.spark.impl.graph.SparkComputationGraph
-
Fit the network using a list of paths for serialized MultiDataSet objects.
- fitSentences(JavaRDD<String>) - Method in class org.deeplearning4j.spark.models.word2vec.SparkWord2Vec
-
- fitSequences(JavaRDD<Sequence<T>>) - Method in class org.deeplearning4j.spark.models.sequencevectors.SparkSequenceVectors
-
Base training entry point
- FixedClusterCountStrategy - Class in org.deeplearning4j.clustering.algorithm.strategy
-
- FixedClusterCountStrategy() - Constructor for class org.deeplearning4j.clustering.algorithm.strategy.FixedClusterCountStrategy
-
- FixedClusterCountStrategy(Integer, String, boolean) - Constructor for class org.deeplearning4j.clustering.algorithm.strategy.FixedClusterCountStrategy
-
- FixedIterationCountCondition - Class in org.deeplearning4j.clustering.algorithm.condition
-
- FixedIterationCountCondition() - Constructor for class org.deeplearning4j.clustering.algorithm.condition.FixedIterationCountCondition
-
- FixedIterationCountCondition(int) - Constructor for class org.deeplearning4j.clustering.algorithm.condition.FixedIterationCountCondition
-
- FlatModelUtils<T extends SequenceElement> - Class in org.deeplearning4j.models.embeddings.reader.impl
-
This model reader is suited for model tests, and for cases where flat scan against elements is required.
- FlatModelUtils() - Constructor for class org.deeplearning4j.models.embeddings.reader.impl.FlatModelUtils
-
- FlatModelUtilsTest - Class in org.deeplearning4j.models.embeddings.reader.impl
-
These are temporary tests and will be removed after issue is solved.
- FlatModelUtilsTest() - Constructor for class org.deeplearning4j.models.embeddings.reader.impl.FlatModelUtilsTest
-
- flattenedGradients - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
-
- flattenedGradients - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- flattenedParams - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
-
- flattenedParams - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- flatteningOrderForVariable(String) - Method in class org.deeplearning4j.nn.gradient.DefaultGradient
-
- flatteningOrderForVariable(String) - Method in interface org.deeplearning4j.nn.gradient.Gradient
-
Return the gradient flattening order for the specified variable, or null if it is not explicitly set
- flattenToY(ModelInfo, GraphVertex[], List<String>, int) - Method in class org.deeplearning4j.ui.flow.FlowIterationListener
-
Deprecated.
This method returns all Layers connected to the currentInput
- flattenToY(ModelInfo, GraphVertex[], List<String>, int) - Method in class org.deeplearning4j.ui.flow.RemoteFlowIterationListener
-
This method returns all Layers connected to the currentInput
- floatIterable(int, int) - Static method in class org.deeplearning4j.datasets.iterator.AbstractDataSetIteratorTest
-
- FloatsDataSetIterator - Class in org.deeplearning4j.datasets.iterator
-
float[] wrapper for DataSetIterator impementation.
- FloatsDataSetIterator(Iterable<Pair<float[], float[]>>, int) - Constructor for class org.deeplearning4j.datasets.iterator.FloatsDataSetIterator
-
- floatValue(StyleDiv.FloatValue) - Method in class org.deeplearning4j.ui.components.component.style.StyleDiv.Builder
-
CSS float styling option
- FlowIterationListener - Class in org.deeplearning4j.ui.flow
-
- FlowIterationListener() - Constructor for class org.deeplearning4j.ui.flow.FlowIterationListener
-
Deprecated.
- FlowIterationListener(int) - Constructor for class org.deeplearning4j.ui.flow.FlowIterationListener
-
Deprecated.
Creates IterationListener and attaches it local UIServer instance
- FlowIterationListener(String, int, int) - Constructor for class org.deeplearning4j.ui.flow.FlowIterationListener
-
Deprecated.
- FlowIterationListener(StatsStorageRouter, int, String, String, boolean) - Constructor for class org.deeplearning4j.ui.flow.FlowIterationListener
-
Deprecated.
- FlowIterationListener(UiConnectionInfo, int) - Constructor for class org.deeplearning4j.ui.flow.FlowIterationListener
-
Deprecated.
- FlowIterationListenerTest - Class in org.deeplearning4j.ui.flow
-
This set of tests addresses different stages of model state serialization for later visualization
- FlowIterationListenerTest() - Constructor for class org.deeplearning4j.ui.flow.FlowIterationListenerTest
-
- FlowListenerModule - Class in org.deeplearning4j.ui.module.flow
-
Module for FlowIterationListener
- FlowListenerModule() - Constructor for class org.deeplearning4j.ui.module.flow.FlowListenerModule
-
- FlowStaticPersistable - Class in org.deeplearning4j.ui.flow.data
-
Created by Alex on 25/10/2016.
- FlowStaticPersistable() - Constructor for class org.deeplearning4j.ui.flow.data.FlowStaticPersistable
-
- FlowUpdatePersistable - Class in org.deeplearning4j.ui.flow.data
-
Created by Alex on 25/10/2016.
- FlowUpdatePersistable() - Constructor for class org.deeplearning4j.ui.flow.data.FlowUpdatePersistable
-
- FoldBetweenPartitionFunction - Class in org.deeplearning4j.spark.text.functions
-
- FoldBetweenPartitionFunction(Broadcast<Counter<Integer>>) - Constructor for class org.deeplearning4j.spark.text.functions.FoldBetweenPartitionFunction
-
- foldersToScan - Variable in class org.deeplearning4j.text.documentiterator.FileLabelAwareIterator.Builder
-
- foldersToScan - Variable in class org.deeplearning4j.text.documentiterator.FilenamesLabelAwareIterator.Builder
-
- FoldWithinPartitionFunction - Class in org.deeplearning4j.spark.text.functions
-
- FoldWithinPartitionFunction(Accumulator<Counter<Integer>>) - Constructor for class org.deeplearning4j.spark.text.functions.FoldWithinPartitionFunction
-
- font(String) - Method in class org.deeplearning4j.ui.components.text.style.StyleText.Builder
-
Specify the font to be used for the text
- fontSize(double) - Method in class org.deeplearning4j.ui.components.text.style.StyleText.Builder
-
Size of the font (pt)
- foreach(JavaDStream<K>, Function<JavaRDD<K>, Void>) - Static method in class org.deeplearning4j.streaming.pipeline.spark.StreamingContextUtils
-
- forgetGateBiasInit(double) - Method in class org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM.Builder
-
Set forget gate bias initalizations.
- forgetGateBiasInit(double) - Method in class org.deeplearning4j.nn.conf.layers.GravesLSTM.Builder
-
Set forget gate bias initalizations.
- format(PatriciaTrie<V>) - Method in class com.atilika.kuromoji.trie.PatriciaTrieFormatter
-
Format trie
- format(PatriciaTrie<V>, boolean) - Method in class com.atilika.kuromoji.trie.PatriciaTrieFormatter
-
Format trie
- format(PatriciaTrie<V>, File) - Method in class com.atilika.kuromoji.trie.PatriciaTrieFormatter
-
Format trie and write to file
- format(PatriciaTrie<V>, File, boolean) - Method in class com.atilika.kuromoji.trie.PatriciaTrieFormatter
-
Format trie and write to file
- format(ViterbiLattice) - Method in class com.atilika.kuromoji.viterbi.ViterbiFormatter
-
- format(ViterbiLattice, List<ViterbiNode>) - Method in class com.atilika.kuromoji.viterbi.ViterbiFormatter
-
- formatPercent(double, int) - Static method in class org.deeplearning4j.util.StringUtils
-
Format a percentage for presentation to the user.
- formatTime(long) - Static method in class org.deeplearning4j.util.StringUtils
-
Given the time in long milliseconds, returns a
String in the format Xhrs, Ymins, Z sec.
- formatTimeDiff(long, long) - Static method in class org.deeplearning4j.util.StringUtils
-
Given a finish and start time in long milliseconds, returns a
String in the format Xhrs, Ymins, Z sec, for the time difference between two times.
- frame - Variable in class org.deeplearning4j.datasets.mnist.draw.DrawReconstruction
-
- frame - Variable in class org.deeplearning4j.spark.models.sequencevectors.learning.elements.SparkCBOW
-
- frame - Variable in class org.deeplearning4j.spark.models.sequencevectors.learning.elements.SparkSkipGram
-
- frameSequence(Sequence<ShallowSequenceElement>, AtomicLong, double) - Method in class org.deeplearning4j.spark.models.sequencevectors.learning.elements.SparkCBOW
-
- frameSequence(Sequence<ShallowSequenceElement>, AtomicLong, double) - Method in class org.deeplearning4j.spark.models.sequencevectors.learning.elements.SparkSkipGram
-
- frameSequence(Sequence<ShallowSequenceElement>, AtomicLong, double) - Method in class org.deeplearning4j.spark.models.sequencevectors.learning.sequence.SparkDBOW
-
- frameSequence(Sequence<ShallowSequenceElement>, AtomicLong, double) - Method in class org.deeplearning4j.spark.models.sequencevectors.learning.sequence.SparkDM
-
- frameSequence(Sequence<ShallowSequenceElement>, AtomicLong, double) - Method in interface org.deeplearning4j.spark.models.sequencevectors.learning.SparkElementsLearningAlgorithm
-
- from - Variable in class org.deeplearning4j.nn.conf.graph.UnstackVertex
-
- fromBinary(JavaPairRDD<String, PortableDataStream>, RecordReader) - Static method in class org.deeplearning4j.spark.util.MLLibUtil
-
Convert a traditional sc.binaryFiles
in to something usable for machine learning
- fromBinary(JavaRDD<Tuple2<String, PortableDataStream>>, RecordReader) - Static method in class org.deeplearning4j.spark.util.MLLibUtil
-
Convert a traditional sc.binaryFiles
in to something usable for machine learning
- fromBytesSerializable(byte[]) - Static method in class org.deeplearning4j.ui.stats.impl.SbeUtil
-
- fromContinuousLabeledPoint(JavaSparkContext, JavaRDD<LabeledPoint>) - Static method in class org.deeplearning4j.spark.util.MLLibUtil
-
- fromContinuousLabeledPoint(JavaRDD<LabeledPoint>) - Static method in class org.deeplearning4j.spark.util.MLLibUtil
-
Converts a continuous JavaRDD LabeledPoint to a JavaRDD DataSet.
- fromContinuousLabeledPoint(JavaRDD<LabeledPoint>, boolean) - Static method in class org.deeplearning4j.spark.util.MLLibUtil
-
Converts a continuous JavaRDD LabeledPoint to a JavaRDD DataSet.
- fromDataSet(JavaSparkContext, JavaRDD<DataSet>) - Static method in class org.deeplearning4j.spark.util.MLLibUtil
-
- fromDataSet(JavaRDD<DataSet>) - Static method in class org.deeplearning4j.spark.util.MLLibUtil
-
Convert an rdd of data set in to labeled point.
- fromDataSet(JavaRDD<DataSet>, boolean) - Static method in class org.deeplearning4j.spark.util.MLLibUtil
-
Convert an rdd of data set in to labeled point.
- fromFile(String, String) - Static method in class org.deeplearning4j.util.StringGrid
-
- fromInput(InputStream, String) - Static method in class org.deeplearning4j.util.StringGrid
-
- fromJson(String) - Static method in class org.deeplearning4j.models.embeddings.loader.VectorsConfiguration
-
- fromJson(String) - Static method in class org.deeplearning4j.models.word2vec.wordstore.VocabularyWord
-
- fromJson(String) - Static method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
Create a computation graph configuration from json
- fromJson(String) - Static method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
Create a neural net configuration from json
- fromJson(String) - Static method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
Create a neural net configuration from json
- fromJson(String) - Static method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- fromJson(String) - Static method in class org.deeplearning4j.spark.impl.paramavg.ParameterAveragingTrainingMaster
-
- fromLabeledPoint(JavaRDD<LabeledPoint>, int, int) - Static method in class org.deeplearning4j.spark.util.MLLibUtil
-
Convert an rdd
of labeled point
based on the specified batch size
in to data set
- fromLabeledPoint(JavaSparkContext, JavaRDD<LabeledPoint>, int) - Static method in class org.deeplearning4j.spark.util.MLLibUtil
-
- fromLabeledPoint(JavaRDD<LabeledPoint>, int) - Static method in class org.deeplearning4j.spark.util.MLLibUtil
-
Converts JavaRDD labeled points to JavaRDD datasets.
- fromLabeledPoint(JavaRDD<LabeledPoint>, int, boolean) - Static method in class org.deeplearning4j.spark.util.MLLibUtil
-
Converts JavaRDD labeled points to JavaRDD DataSets.
- fromPair(Pair<InMemoryLookupTable, VocabCache>) - Static method in class org.deeplearning4j.models.embeddings.loader.WordVectorSerializer
-
Load word vectors from the given pair
- fromString(String, String) - Static method in class org.deeplearning4j.util.MathUtils
-
This will take a given string and separator and convert it to an equivalent
double array.
- fromTableAndVocab(WeightLookupTable, VocabCache) - Static method in class org.deeplearning4j.models.embeddings.loader.WordVectorSerializer
-
Load word vectors for the given vocab and table
- fromYaml(String) - Static method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
Create a neural net configuration from json
- fromYaml(String) - Static method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
Create a neural net configuration from json
- fromYaml(String) - Static method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
Create a neural net configuration from json
- fromYaml(String) - Static method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- fromYaml(String) - Static method in class org.deeplearning4j.spark.impl.paramavg.ParameterAveragingTrainingMaster
-
- FrozenLayer<LayerT extends Layer> - Class in org.deeplearning4j.nn.layers
-
For purposes of transfer learning
A frozen layers wraps another dl4j layer within it.
- FrozenLayer(LayerT) - Constructor for class org.deeplearning4j.nn.layers.FrozenLayer
-
- FrozenLayerTest - Class in org.deeplearning4j.nn.layers
-
Created by susaneraly on 2/5/17.
- FrozenLayerTest() - Constructor for class org.deeplearning4j.nn.layers.FrozenLayerTest
-
- function(Function<T, Result>) - Static method in class org.deeplearning4j.ui.play.misc.FunctionUtil
-
- function0(Supplier<Result>) - Static method in class org.deeplearning4j.ui.play.misc.FunctionUtil
-
- FunctionType - Enum in org.deeplearning4j.ui.api
-
Enumeration for the type of function.
- FunctionUtil - Class in org.deeplearning4j.ui.play.misc
-
Utility methods for Routing
- FunctionUtil() - Constructor for class org.deeplearning4j.ui.play.misc.FunctionUtil
-
- fwdPassOutput - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
-
- fwdPassOutputAsArrays - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
-
- FwdPassReturn - Class in org.deeplearning4j.nn.layers.recurrent
-
Created by benny on 12/31/15.
- FwdPassReturn() - Constructor for class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
-
- fz - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
-