Skip navigation links
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

F

f1(Integer) - Method in class org.deeplearning4j.eval.Evaluation
Calculate f1 score for a given class
f1() - Method in class org.deeplearning4j.eval.Evaluation
TP: true positive FP: False Positive FN: False Negative F1 score: 2 * TP / (2TP + FP + FN)
f1(int) - Method in class org.deeplearning4j.eval.EvaluationBinary
Get the F1 score for the specified output
f1Score(DataSet) - Method in interface org.deeplearning4j.nn.api.Classifier
Sets the input and labels and returns a score for the prediction wrt true labels
f1Score(INDArray, INDArray) - Method in interface org.deeplearning4j.nn.api.Classifier
Returns the f1 score for the given examples.
f1Score(DataSet) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
Sets the input and labels and returns a score for the prediction wrt true labels
f1Score(INDArray, INDArray) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
Returns the f1 score for the given examples.
f1Score(DataSet) - Method in class org.deeplearning4j.nn.layers.LossLayer
Sets the input and labels and returns a score for the prediction wrt true labels
f1Score(INDArray, INDArray) - Method in class org.deeplearning4j.nn.layers.LossLayer
Returns the f1 score for the given examples.
f1Score(INDArray, INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer
Returns the f1 score for the given examples.
f1Score(DataSet) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Sets the input and labels and returns a score for the prediction wrt true labels
f1Score(INDArray, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Sets the input and labels and returns a score for the prediction wrt true labels
fa - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
 
factorial(double) - Static method in class org.deeplearning4j.util.MathUtils
This will return the factorial of the given number n.
Factory<T> - Interface in org.deeplearning4j.berkeley
 
Factory.DefaultFactory<T> - Class in org.deeplearning4j.berkeley
 
FALLBACK_LANGUAGE - Static variable in class org.deeplearning4j.ui.i18n.DefaultI18N
 
falseAlarmRate() - Method in class org.deeplearning4j.eval.Evaluation
False Alarm Rate (FAR) reflects rate of misclassified to classified records http://ro.ecu.edu.au/cgi/viewcontent.cgi?article=1058&context=isw
falseNegativeRate(Integer) - Method in class org.deeplearning4j.eval.Evaluation
Returns the false negative rate for a given label
falseNegativeRate(Integer, double) - Method in class org.deeplearning4j.eval.Evaluation
Returns the false negative rate for a given label
falseNegativeRate() - Method in class org.deeplearning4j.eval.Evaluation
False negative rate based on guesses so far Takes into account all known classes and outputs average fnr across all of them
falseNegatives - Variable in class org.deeplearning4j.eval.Evaluation
 
falseNegatives() - Method in class org.deeplearning4j.eval.Evaluation
False negatives: correctly rejected
falseNegatives(int) - Method in class org.deeplearning4j.eval.EvaluationBinary
Get the false negatives count for the specified output
falsePositiveRate(Integer) - Method in class org.deeplearning4j.eval.Evaluation
Returns the false positive rate for a given label
falsePositiveRate(Integer, double) - Method in class org.deeplearning4j.eval.Evaluation
Returns the false positive rate for a given label
falsePositiveRate() - Method in class org.deeplearning4j.eval.Evaluation
False positive rate based on guesses so far Takes into account all known classes and outputs average fpr across all of them
falsePositives - Variable in class org.deeplearning4j.eval.Evaluation
 
falsePositives() - Method in class org.deeplearning4j.eval.Evaluation
False positive: wrong guess
falsePositives(int) - Method in class org.deeplearning4j.eval.EvaluationBinary
Get the false positives count for the specified output
fanIn - Variable in class org.deeplearning4j.nn.weights.WeightInitUtilTest
 
fanOut - Variable in class org.deeplearning4j.nn.weights.WeightInitUtilTest
 
FEATURE_MAP_FILENAME - Static variable in class com.atilika.kuromoji.dict.TokenInfoDictionary
 
FeatureInfoMap - Class in com.atilika.kuromoji.buffer
 
FeatureInfoMap() - Constructor for class com.atilika.kuromoji.buffer.FeatureInfoMap
 
featureInfos - Variable in class com.atilika.kuromoji.buffer.BufferEntry
 
features - Variable in class com.atilika.kuromoji.buffer.BufferEntry
 
features(List<String>) - Method in class com.atilika.kuromoji.dict.GenericDictionaryEntry.Builder
 
featurize(MultiDataSet) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearningHelper
During training frozen vertices/layers can be treated as "featurizing" the input The forward pass through these frozen layer/vertices can be done in advance and the dataset saved to disk to iterate quickly on the smaller unfrozen part of the model Currently does not support datasets with feature masks
featurize(DataSet) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearningHelper
During training frozen vertices/layers can be treated as "featurizing" the input The forward pass through these frozen layer/vertices can be done in advance and the dataset saved to disk to iterate quickly on the smaller unfrozen part of the model Currently does not support datasets with feature masks
feedDataSet(DataSet) - Method in class org.deeplearning4j.parallelism.parameterserver.ParameterServerTrainer
 
feedDataSet(DataSet) - Method in class org.deeplearning4j.parallelism.trainer.DefaultTrainer
 
feedDataSet(DataSet) - Method in interface org.deeplearning4j.parallelism.trainer.Trainer
Train on a DataSet
feedForward(int) - Static method in class org.deeplearning4j.nn.conf.inputs.InputType
InputType for feed forward network data
feedForward(INDArray, boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Conduct forward pass using a single input array.
feedForward(INDArray[], boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Conduct forward pass using an array of inputs
feedForward() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Conduct forward pass using the stored inputs, at test time
feedForward(boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Conduct forward pass using the stored inputs
feedForward(INDArray, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Compute activations from input to output of the output layer
feedForward(boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Compute activations from input to output of the output layer
feedForward() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Compute activations from input to output of the output layer
feedForward(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Compute activations from input to output of the output layer
feedForward(INDArray, INDArray, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Compute the activations from the input to the output layer, given mask arrays (that may be null) The masking arrays are used in situations such an one-to-many and many-to-one rucerrent neural network (RNN) designs, as well as for supporting time series of varying lengths within the same minibatch for RNNs.
FeedForwardLayer - Class in org.deeplearning4j.nn.conf.layers
Created by jeffreytang on 7/21/15.
FeedForwardLayer(FeedForwardLayer.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.FeedForwardLayer
 
FeedForwardLayer.Builder<T extends FeedForwardLayer.Builder<T>> - Class in org.deeplearning4j.nn.conf.layers
 
feedForwardMaskArray(INDArray, MaskState, int) - Method in interface org.deeplearning4j.nn.api.Layer
Feed forward the input mask array, setting in in the layer as appropriate.
feedForwardMaskArray(INDArray, MaskState, int) - Method in interface org.deeplearning4j.nn.conf.InputPreProcessor
 
feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.BaseInputPreProcessor
 
feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.CnnToFeedForwardPreProcessor
 
feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.CnnToRnnPreProcessor
 
feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.ComposableInputPreProcessor
 
feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.custom.MyCustomPreprocessor
 
feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToCnnPreProcessor
 
feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToRnnPreProcessor
 
feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.RnnToCnnPreProcessor
 
feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.RnnToFeedForwardPreProcessor
 
feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
 
feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.layers.pooling.GlobalPoolingLayer
 
feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
 
feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
 
feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer
 
feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
 
feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
feedForwardMaskArrays(INDArray[], MaskState, int) - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
 
feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.ElementWiseVertex
 
feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.InputVertex
 
feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.L2NormalizeVertex
 
feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.L2Vertex
 
feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
 
feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.MergeVertex
 
feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.PreprocessorVertex
 
feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.DuplicateToTimeSeriesVertex
 
feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.LastTimeStepVertex
 
feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.ScaleVertex
 
feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.StackVertex
 
feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.SubsetVertex
 
feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.UnstackVertex
 
FeedForwardToCnnPreProcessor - Class in org.deeplearning4j.nn.conf.preprocessor
A preprocessor to allow CNN and standard feed-forward network layers to be used together.
For example, DenseLayer -> CNN
This does two things:
(a) Reshapes activations out of FeedFoward layer (which is 2D or 3D with shape [numExamples, inputHeight*inputWidth*numChannels]) into 4d activations (with shape [numExamples, numChannels, inputHeight, inputWidth]) suitable to feed into CNN layers.
(b) Reshapes 4d epsilons (weights*deltas) from CNN layer, with shape [numExamples, numChannels, inputHeight, inputWidth]) into 2d epsilons (with shape [numExamples, inputHeight*inputWidth*numChannels]) for use in feed forward layer Note: numChannels is equivalent to depth or featureMaps referenced in different literature
FeedForwardToCnnPreProcessor(int, int, int) - Constructor for class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToCnnPreProcessor
Reshape to a channels x rows x columns tensor
FeedForwardToCnnPreProcessor(int, int) - Constructor for class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToCnnPreProcessor
 
feedForwardToLayer(int, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Compute the activations from the input to the specified layer.
To compute activations for all layers, use feedForward(...) methods
Note: output list includes the original input.
feedForwardToLayer(int, INDArray, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Compute the activations from the input to the specified layer.
To compute activations for all layers, use feedForward(...) methods
Note: output list includes the original input.
feedForwardToLayer(int, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Compute the activations from the input to the specified layer, using the currently set input for the network.
To compute activations for all layers, use feedForward(...) methods
Note: output list includes the original input.
FeedForwardToRnnPreProcessor - Class in org.deeplearning4j.nn.conf.preprocessor
A preprocessor to allow RNN and feed-forward network layers to be used together.
For example, DenseLayer -> GravesLSTM
This does two things:
(a) Reshapes activations out of FeedFoward layer (which is 2D with shape [miniBatchSize*timeSeriesLength,layerSize]) into 3d activations (with shape [miniBatchSize,layerSize,timeSeriesLength]) suitable to feed into RNN layers.
(b) Reshapes 3d epsilons (weights*deltas from RNN layer, with shape [miniBatchSize,layerSize,timeSeriesLength]) into 2d epsilons (with shape [miniBatchSize*timeSeriesLength,layerSize]) for use in feed forward layer
FeedForwardToRnnPreProcessor() - Constructor for class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToRnnPreProcessor
 
feedForwardWithKey(JavaPairRDD<K, INDArray[]>, int) - Method in class org.deeplearning4j.spark.impl.graph.SparkComputationGraph
Feed-forward the specified data, with the given keys.
feedForwardWithKey(JavaPairRDD<K, INDArray>, int) - Method in class org.deeplearning4j.spark.impl.multilayer.SparkDl4jMultiLayer
Feed-forward the specified data, with the given keys.
FeedForwardWithKeyFunction<K> - Class in org.deeplearning4j.spark.impl.multilayer.scoring
Function to feed-forward examples, and get the network output (for example, class probabilities).
FeedForwardWithKeyFunction(Broadcast<INDArray>, Broadcast<String>, int) - Constructor for class org.deeplearning4j.spark.impl.multilayer.scoring.FeedForwardWithKeyFunction
 
feedForwardWithKeySingle(JavaPairRDD<K, INDArray>, int) - Method in class org.deeplearning4j.spark.impl.graph.SparkComputationGraph
Feed-forward the specified data, with the given keys.
feedMultiDataSet(MultiDataSet) - Method in class org.deeplearning4j.parallelism.parameterserver.ParameterServerTrainer
 
feedMultiDataSet(MultiDataSet) - Method in class org.deeplearning4j.parallelism.trainer.DefaultTrainer
 
feedMultiDataSet(MultiDataSet) - Method in interface org.deeplearning4j.parallelism.trainer.Trainer
Train on a MultiDataSet
fetch(int) - Method in class org.deeplearning4j.datasets.fetchers.CurvesDataFetcher
Fetches the next dataset.
fetch(int) - Method in class org.deeplearning4j.datasets.fetchers.IrisDataFetcher
 
fetch(int) - Method in class org.deeplearning4j.datasets.fetchers.MnistDataFetcher
 
fetch(int) - Method in interface org.deeplearning4j.datasets.iterator.DataSetFetcher
Deprecated.
Fetches the next dataset.
fetch(int) - Method in class org.deeplearning4j.datasets.iterator.impl.MovingWindowDataSetFetcher
Fetches the next dataset.
fetch(int) - Method in class org.deeplearning4j.models.word2vec.iterator.Word2VecDataFetcher
 
fetcher - Variable in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
fetchLabels(boolean) - Method in class org.deeplearning4j.models.word2vec.wordstore.VocabConstructor.Builder
Sets, if labels should be fetched, during vocab building
fetchLabels - Variable in class org.deeplearning4j.spark.models.sequencevectors.functions.CountFunction
 
fetchLabels - Variable in class org.deeplearning4j.spark.models.sequencevectors.functions.ExtraCountFunction
 
fieldsPresent() - Method in class org.deeplearning4j.ui.stats.sbe.StaticInfoDecoder
 
fieldsPresent() - Method in class org.deeplearning4j.ui.stats.sbe.StaticInfoEncoder
 
fieldsPresent() - Method in class org.deeplearning4j.ui.stats.sbe.UpdateDecoder
 
fieldsPresent() - Method in class org.deeplearning4j.ui.stats.sbe.UpdateEncoder
 
fieldsPresentId() - Static method in class org.deeplearning4j.ui.stats.sbe.StaticInfoDecoder
 
fieldsPresentId() - Static method in class org.deeplearning4j.ui.stats.sbe.UpdateDecoder
 
fieldsPresentMetaAttribute(MetaAttribute) - Static method in class org.deeplearning4j.ui.stats.sbe.StaticInfoDecoder
 
fieldsPresentMetaAttribute(MetaAttribute) - Static method in class org.deeplearning4j.ui.stats.sbe.UpdateDecoder
 
file - Variable in class org.deeplearning4j.text.sentenceiterator.FileSentenceIterator
 
file(File) - Method in class org.deeplearning4j.ui.storage.mapdb.MapDBStatsStorage.Builder
 
FILE_DIR - Variable in class org.deeplearning4j.base.MnistFetcher
 
FileDocumentIterator - Class in org.deeplearning4j.text.documentiterator
Iterate over files
FileDocumentIterator(String) - Constructor for class org.deeplearning4j.text.documentiterator.FileDocumentIterator
 
FileDocumentIterator(File) - Constructor for class org.deeplearning4j.text.documentiterator.FileDocumentIterator
 
FileDocumentIteratorTest - Class in org.deeplearning4j.text.documentiterator
Created by fartovii on 09.11.15.
FileDocumentIteratorTest() - Constructor for class org.deeplearning4j.text.documentiterator.FileDocumentIteratorTest
 
fileIterator - Variable in class org.deeplearning4j.text.sentenceiterator.FileSentenceIterator
 
FileLabelAwareIterator - Class in org.deeplearning4j.text.documentiterator
This is simple filesystem-based LabelAware iterator.
FileLabelAwareIterator() - Constructor for class org.deeplearning4j.text.documentiterator.FileLabelAwareIterator
 
FileLabelAwareIterator(List<File>, LabelsSource) - Constructor for class org.deeplearning4j.text.documentiterator.FileLabelAwareIterator
 
FileLabelAwareIterator.Builder - Class in org.deeplearning4j.text.documentiterator
 
FileLabelAwareIteratorTest - Class in org.deeplearning4j.text.documentiterator
Created by raver119 on 03.01.16.
FileLabelAwareIteratorTest() - Constructor for class org.deeplearning4j.text.documentiterator.FileLabelAwareIteratorTest
 
FileLabeledSentenceProvider - Class in org.deeplearning4j.iterator.provider
Iterate over a set of sentences/documents, where the sentences are to be loaded (as required) from the provided files.
FileLabeledSentenceProvider(Map<String, List<File>>) - Constructor for class org.deeplearning4j.iterator.provider.FileLabeledSentenceProvider
 
FileLabeledSentenceProvider(Map<String, List<File>>, Random) - Constructor for class org.deeplearning4j.iterator.provider.FileLabeledSentenceProvider
 
FILENAME_AGGREGATE_TIME - Static variable in class org.deeplearning4j.spark.impl.paramavg.stats.ParameterAveragingTrainingMasterStats
 
FILENAME_BROADCAST_CREATE - Static variable in class org.deeplearning4j.spark.impl.paramavg.stats.ParameterAveragingTrainingMasterStats
 
FILENAME_BROADCAST_GET_STATS - Static variable in class org.deeplearning4j.spark.impl.paramavg.stats.ParameterAveragingTrainingWorkerStats
 
FILENAME_COUNT_RDD_SIZE - Static variable in class org.deeplearning4j.spark.impl.paramavg.stats.ParameterAveragingTrainingMasterStats
 
FILENAME_DATASET_GET_TIME_STATS - Static variable in class org.deeplearning4j.spark.api.stats.CommonSparkTrainingStats
 
FILENAME_EXPORT_RDD_TIME - Static variable in class org.deeplearning4j.spark.impl.paramavg.stats.ParameterAveragingTrainingMasterStats
 
FILENAME_FIT_STATS - Static variable in class org.deeplearning4j.spark.impl.paramavg.stats.ParameterAveragingTrainingWorkerStats
 
FILENAME_FIT_TIME - Static variable in class org.deeplearning4j.spark.impl.paramavg.stats.ParameterAveragingTrainingMasterStats
 
FILENAME_GET_INITIAL_MODEL_STATS - Static variable in class org.deeplearning4j.spark.api.stats.CommonSparkTrainingStats
 
FILENAME_INIT_STATS - Static variable in class org.deeplearning4j.spark.impl.paramavg.stats.ParameterAveragingTrainingWorkerStats
 
FILENAME_MAP_PARTITIONS_TIME - Static variable in class org.deeplearning4j.spark.impl.paramavg.stats.ParameterAveragingTrainingMasterStats
 
FILENAME_PROCESS_MINIBATCH_TIME_STATS - Static variable in class org.deeplearning4j.spark.api.stats.CommonSparkTrainingStats
 
FILENAME_PROCESS_PARAMS_TIME - Static variable in class org.deeplearning4j.spark.impl.paramavg.stats.ParameterAveragingTrainingMasterStats
 
FILENAME_REPARTITION_STATS - Static variable in class org.deeplearning4j.spark.impl.paramavg.stats.ParameterAveragingTrainingMasterStats
 
FILENAME_SPLIT_TIME - Static variable in class org.deeplearning4j.spark.impl.paramavg.stats.ParameterAveragingTrainingMasterStats
 
FILENAME_TOTAL_TIME_STATS - Static variable in class org.deeplearning4j.spark.api.stats.CommonSparkTrainingStats
 
fileNameClean(String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Returns a "clean" version of the given filename in which spaces have been converted to dashes and all non-alphaneumeric chars are underscores.
FilenamesLabelAwareIterator - Class in org.deeplearning4j.text.documentiterator
This LabelAwareIterator scans folder for files, and returns them as LabelledDocuments.
FilenamesLabelAwareIterator() - Constructor for class org.deeplearning4j.text.documentiterator.FilenamesLabelAwareIterator
 
FilenamesLabelAwareIterator(List<File>, LabelsSource) - Constructor for class org.deeplearning4j.text.documentiterator.FilenamesLabelAwareIterator
 
FilenamesLabelAwareIterator.Builder - Class in org.deeplearning4j.text.documentiterator
 
FilenamesLabelAwareIteratorTest - Class in org.deeplearning4j.text.documentiterator
 
FilenamesLabelAwareIteratorTest() - Constructor for class org.deeplearning4j.text.documentiterator.FilenamesLabelAwareIteratorTest
 
FileOperations - Class in org.deeplearning4j.util
 
FileResourceResolver - Class in com.atilika.kuromoji.util
 
FileResourceResolver() - Constructor for class com.atilika.kuromoji.util.FileResourceResolver
 
files - Variable in class org.deeplearning4j.text.documentiterator.FileLabelAwareIterator
 
files - Variable in class org.deeplearning4j.text.documentiterator.FilenamesLabelAwareIterator
 
FileSentenceIterator - Class in org.deeplearning4j.text.sentenceiterator
 
FileSentenceIterator(SentencePreProcessor, File) - Constructor for class org.deeplearning4j.text.sentenceiterator.FileSentenceIterator
Takes a single file or directory
FileSentenceIterator(File) - Constructor for class org.deeplearning4j.text.sentenceiterator.FileSentenceIterator
 
FileStatsStorage - Class in org.deeplearning4j.ui.storage
A StatsStorage implementation that stores UI data in a file for persistence.
Can be used for multiple instances, and across multiple independent runs.
FileStatsStorage(File) - Constructor for class org.deeplearning4j.ui.storage.FileStatsStorage
 
fillDown(String, int) - Method in class org.deeplearning4j.util.StringGrid
 
fillList(Iterator<? extends T>, List<T>) - Static method in class org.deeplearning4j.berkeley.Iterators
 
fillList(Iterator<? extends T>) - Static method in class org.deeplearning4j.berkeley.Iterators
 
fillQueue() - Method in class org.deeplearning4j.datasets.iterator.AbstractDataSetIterator
 
Filter<T> - Interface in org.deeplearning4j.berkeley
Filters are boolean cooccurrences which accept or reject items.
filter(Iterator<T>, Filter<T>) - Static method in class org.deeplearning4j.berkeley.Iterators
 
filterBySimilarity(double, int, int) - Method in class org.deeplearning4j.util.StringGrid
 
FilteredIterator(Filter<T>, Iterator<T>) - Constructor for class org.deeplearning4j.berkeley.Iterators.FilteredIterator
 
FilteredIterator(Filter<T>, Iterable<T>) - Constructor for class org.deeplearning4j.berkeley.Iterators.FilteredIterator
 
FilteredSequenceIterator<T extends SequenceElement> - Class in org.deeplearning4j.models.sequencevectors.iterators
This implementation of SequenceIterator passes each sequence through specified vocabulary, filtering out SequenceElements that are not available in Vocabulary.
FilteredSequenceIterator(SequenceIterator<T>, VocabCache<T>) - Constructor for class org.deeplearning4j.models.sequencevectors.iterators.FilteredSequenceIterator
Creates Filtered SequenceIterator on top of another SequenceIterator and appropriate VocabCache instance
filterMinWordAddVocab(Counter<String>) - Method in class org.deeplearning4j.spark.text.functions.TextPipeline
 
filterResultsBy(Predicate<String>) - Method in class org.deeplearning4j.util.reflections.DL4JSubTypesScanner
 
filterRowsByColumn(int, Collection<String>) - Method in class org.deeplearning4j.util.StringGrid
 
filterVocab(AbstractCache<T>, int) - Method in class org.deeplearning4j.models.word2vec.wordstore.VocabConstructor
 
finalize() - Method in class org.deeplearning4j.text.sentenceiterator.BasicLineIterator
 
finalize() - Method in class org.deeplearning4j.text.sentenceiterator.PrefetchingSentenceIterator
Deprecated.
 
finalMomentum - Variable in class org.deeplearning4j.plot.BarnesHutTsne
 
finalMomentum - Variable in class org.deeplearning4j.plot.Tsne.Builder
 
finalMomentum - Variable in class org.deeplearning4j.plot.Tsne
 
finalNOut - Static variable in class org.deeplearning4j.gradientcheck.CNN1DGradientCheckTest
 
finalProcessor - Variable in class org.deeplearning4j.streaming.routes.DL4jServeRouteBuilder
 
find(String, String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Say whether this regular expression can be found inside this String.
findCreds() - Method in class org.deeplearning4j.aws.s3.BaseS3
 
findHead(Tree) - Method in class org.deeplearning4j.text.corpora.treeparser.HeadWordFinder
Finds the bottom most head
findHead2(Tree) - Method in class org.deeplearning4j.text.corpora.treeparser.HeadWordFinder
 
findIndex(INDArray) - Method in class org.deeplearning4j.clustering.quadtree.QuadTree
Returns the cell of this element
findNext(String, char, char, int, StringBuilder) - Static method in class org.deeplearning4j.util.StringUtils
Finds the first occurrence of the separator character ignoring the escaped separators starting from the index.
findUserDictionaryMatches(String) - Method in class com.atilika.kuromoji.dict.UserDictionary
Lookup words in text
finetune() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Run SGD based on the given labels
FineTuneConfiguration - Class in org.deeplearning4j.nn.transferlearning
Created by Alex on 21/02/2017.
FineTuneConfiguration() - Constructor for class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
 
fineTuneConfiguration(FineTuneConfiguration) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.Builder
Fine tune configurations specified will overwrite the existing configuration if any Usage example: specify a learning rate will set specified learning rate on all layers Refer to the fineTuneConfiguration class for more details
fineTuneConfiguration(FineTuneConfiguration) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
Set parameters to selectively override existing learning parameters Usage eg.
FineTuneConfiguration.Builder - Class in org.deeplearning4j.nn.transferlearning
 
FingerPrintKeyer - Class in org.deeplearning4j.util
Copied from google refine: takes the key and gets rid of all punctuation, transforms to lower case and alphabetic sorts the words
FingerPrintKeyer() - Constructor for class org.deeplearning4j.util.FingerPrintKeyer
 
finish() - Method in interface org.deeplearning4j.models.embeddings.learning.ElementsLearningAlgorithm
 
finish() - Method in class org.deeplearning4j.models.embeddings.learning.impl.elements.CBOW
 
finish() - Method in class org.deeplearning4j.models.embeddings.learning.impl.elements.GloVe
 
finish() - Method in class org.deeplearning4j.models.embeddings.learning.impl.elements.SkipGram
 
finish() - Method in class org.deeplearning4j.models.embeddings.learning.impl.sequence.DBOW
 
finish() - Method in class org.deeplearning4j.models.embeddings.learning.impl.sequence.DM
 
finish() - Method in interface org.deeplearning4j.models.embeddings.learning.SequenceLearningAlgorithm
 
finish() - Method in class org.deeplearning4j.models.glove.count.ASCIICoOccurrenceReader
 
finish() - Method in class org.deeplearning4j.models.glove.count.ASCIICoOccurrenceWriter
 
finish() - Method in class org.deeplearning4j.models.glove.count.BinaryCoOccurrenceReader
 
finish() - Method in class org.deeplearning4j.models.glove.count.BinaryCoOccurrenceWriter
 
finish() - Method in interface org.deeplearning4j.models.glove.count.CoOccurenceReader
 
finish() - Method in interface org.deeplearning4j.models.glove.count.CoOccurrenceWriter
Implementations of this method should close everything they use, before eradication
finish() - Method in class org.deeplearning4j.spark.models.sequencevectors.learning.elements.BaseSparkLearningAlgorithm
 
finish() - Method in class org.deeplearning4j.spark.models.sequencevectors.learning.sequence.BaseSparkSequenceLearningAlgorithm
 
finish() - Method in interface org.deeplearning4j.text.invertedindex.InvertedIndex
Finishes saving data
finish() - Method in class org.deeplearning4j.text.sentenceiterator.AggregatingSentenceIterator
 
finish() - Method in class org.deeplearning4j.text.sentenceiterator.BaseSentenceIterator
 
finish() - Method in class org.deeplearning4j.text.sentenceiterator.BasicLineIterator
 
finish() - Method in class org.deeplearning4j.text.sentenceiterator.BasicResultSetIterator
 
finish() - Method in class org.deeplearning4j.text.sentenceiterator.labelaware.LabelAwareListSentenceIterator
Allows for any finishing (closing of input streams or the like)
finish() - Method in class org.deeplearning4j.text.sentenceiterator.MutipleEpochsSentenceIterator
 
finish() - Method in class org.deeplearning4j.text.sentenceiterator.PrefetchingSentenceIterator
Deprecated.
 
finish() - Method in interface org.deeplearning4j.text.sentenceiterator.SentenceIterator
Allows for any finishing (closing of input streams or the like)
finish() - Method in class org.deeplearning4j.text.sentenceiterator.StreamLineIterator
 
finish() - Method in class org.deeplearning4j.text.sentenceiterator.SynchronizedSentenceIterator
 
firstChild() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
 
FirstComparator() - Constructor for class org.deeplearning4j.berkeley.Pair.FirstComparator
 
FirstIterationFunction - Class in org.deeplearning4j.spark.models.embeddings.word2vec
 
FirstIterationFunction(Broadcast<Map<String, Object>>, Broadcast<double[]>, Broadcast<VocabCache<VocabWord>>) - Constructor for class org.deeplearning4j.spark.models.embeddings.word2vec.FirstIterationFunction
 
FirstIterationFunctionAdapter - Class in org.deeplearning4j.spark.models.embeddings.word2vec
 
FirstIterationFunctionAdapter(Broadcast<Map<String, Object>>, Broadcast<double[]>, Broadcast<VocabCache<VocabWord>>) - Constructor for class org.deeplearning4j.spark.models.embeddings.word2vec.FirstIterationFunctionAdapter
 
fit() - Method in class org.deeplearning4j.bagofwords.vectorizer.BaseTextVectorizer
 
fit() - Method in interface org.deeplearning4j.bagofwords.vectorizer.TextVectorizer
Train the model
fit(DataSet) - Method in class org.deeplearning4j.earlystopping.trainer.BaseEarlyStoppingTrainer
 
fit(MultiDataSet) - Method in class org.deeplearning4j.earlystopping.trainer.BaseEarlyStoppingTrainer
 
fit() - Method in class org.deeplearning4j.earlystopping.trainer.BaseEarlyStoppingTrainer
 
fit(DataSet) - Method in class org.deeplearning4j.earlystopping.trainer.EarlyStoppingGraphTrainer
 
fit(MultiDataSet) - Method in class org.deeplearning4j.earlystopping.trainer.EarlyStoppingGraphTrainer
 
fit(DataSet) - Method in class org.deeplearning4j.earlystopping.trainer.EarlyStoppingTrainer
 
fit(MultiDataSet) - Method in class org.deeplearning4j.earlystopping.trainer.EarlyStoppingTrainer
 
fit() - Method in interface org.deeplearning4j.earlystopping.trainer.IEarlyStoppingTrainer
Conduct early stopping training
fit(IGraph<V, E>, int) - Method in class org.deeplearning4j.graph.models.deepwalk.DeepWalk
Fit the model, in parallel.
fit(GraphWalkIteratorProvider<V>) - Method in class org.deeplearning4j.graph.models.deepwalk.DeepWalk
Fit the model, in parallel, using a given GraphWalkIteratorProvider.
This object is used to generate multiple GraphWalkIterators, which can then be distributed to each thread to do in parallel
Note that DeepWalk.fit(IGraph, int) will be more convenient in many cases
Note that DeepWalk.initialize(IGraph) or DeepWalk.initialize(int[]) must be called first.
fit(GraphWalkIterator<V>) - Method in class org.deeplearning4j.graph.models.deepwalk.DeepWalk
Fit the DeepWalk model using a single thread using a given GraphWalkIterator.
fit(EntryPointFitParameters) - Method in class org.deeplearning4j.keras.DeepLearning4jEntryPoint
Performs fitting of the model which is referenced in the parameters according to learning parameters specified.
fit() - Method in class org.deeplearning4j.models.glove.AbstractCoOccurrences
 
fit() - Method in class org.deeplearning4j.models.paragraphvectors.ParagraphVectors
 
fit() - Method in class org.deeplearning4j.models.sequencevectors.SequenceVectors
Starts training over
fit(DataSetIterator) - Method in interface org.deeplearning4j.nn.api.Classifier
Train the model based on the datasetiterator
fit(INDArray, INDArray) - Method in interface org.deeplearning4j.nn.api.Classifier
Fit the model
fit(DataSet) - Method in interface org.deeplearning4j.nn.api.Classifier
Fit the model
fit(INDArray, int[]) - Method in interface org.deeplearning4j.nn.api.Classifier
Fit the model
fit() - Method in interface org.deeplearning4j.nn.api.Model
All models have a fit method
fit(INDArray) - Method in interface org.deeplearning4j.nn.api.Model
Fit the model to the given data
fit(DataSet) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Fit the ComputationGraph using a DataSet.
fit(DataSetIterator) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Fit the ComputationGraph using a DataSetIterator.
fit(MultiDataSet) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Fit the ComputationGraph using a MultiDataSet
fit(MultiDataSetIterator) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Fit the ComputationGraph using a MultiDataSetIterator
fit(INDArray[], INDArray[]) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Fit the ComputationGraph given arrays of inputs and labels.
fit(INDArray[], INDArray[], INDArray[], INDArray[]) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Fit the ComputationGraph using the specified inputs and labels (and mask arrays)
fit() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
 
fit(INDArray) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
 
fit(INDArray) - Method in class org.deeplearning4j.nn.layers.ActivationLayer
 
fit() - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
fit(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
fit(DataSetIterator) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
 
fit(INDArray, INDArray) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
Fit the model
fit(DataSet) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
Fit the model
fit(INDArray, int[]) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
Fit the model
fit(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
Fit the model to the given data
fit(INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
 
fit() - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
 
fit(INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
 
fit(INDArray) - Method in class org.deeplearning4j.nn.layers.DropoutLayer
 
fit(INDArray) - Method in class org.deeplearning4j.nn.layers.feedforward.dense.DenseLayer
 
fit() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
 
fit(INDArray) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
 
fit(INDArray) - Method in class org.deeplearning4j.nn.layers.LossLayer
 
fit(DataSetIterator) - Method in class org.deeplearning4j.nn.layers.LossLayer
 
fit(INDArray, INDArray) - Method in class org.deeplearning4j.nn.layers.LossLayer
Fit the model
fit(DataSet) - Method in class org.deeplearning4j.nn.layers.LossLayer
Fit the model
fit(INDArray, int[]) - Method in class org.deeplearning4j.nn.layers.LossLayer
Fit the model
fit(INDArray) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
 
fit(INDArray) - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
 
fit(INDArray) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
 
fit() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
 
fit(DataSetIterator) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
fit(INDArray, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Fit the model
fit(INDArray, INDArray, INDArray, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Fit the model
fit(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Fit the unsupervised model
fit(DataSet) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Fit the model
fit(INDArray, int[]) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Fit the model
fit() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
fit() - Method in class org.deeplearning4j.parallelism.EarlyStoppingParallelTrainer
 
fit(MultiDataSetIterator) - Method in class org.deeplearning4j.parallelism.ParallelWrapper
 
fit(DataSetIterator) - Method in class org.deeplearning4j.parallelism.ParallelWrapper
This method takes DataSetIterator, and starts training over it by scheduling DataSets to different executors
fit() - Method in class org.deeplearning4j.plot.BarnesHutTsne
 
fit(INDArray) - Method in class org.deeplearning4j.plot.BarnesHutTsne
 
fit(INDArray, int) - Method in class org.deeplearning4j.plot.BarnesHutTsne
fit(JavaRDD<DataSet>) - Method in class org.deeplearning4j.spark.earlystopping.BaseSparkEarlyStoppingTrainer
 
fit() - Method in class org.deeplearning4j.spark.earlystopping.BaseSparkEarlyStoppingTrainer
 
fit(JavaRDD<DataSet>) - Method in class org.deeplearning4j.spark.earlystopping.SparkEarlyStoppingGraphTrainer
 
fit(JavaRDD<DataSet>) - Method in class org.deeplearning4j.spark.earlystopping.SparkEarlyStoppingTrainer
 
fit(RDD<DataSet>) - Method in class org.deeplearning4j.spark.impl.graph.SparkComputationGraph
Fit the ComputationGraph with the given data set
fit(JavaRDD<DataSet>) - Method in class org.deeplearning4j.spark.impl.graph.SparkComputationGraph
Fit the ComputationGraph with the given data set
fit(String) - Method in class org.deeplearning4j.spark.impl.graph.SparkComputationGraph
Fit the SparkComputationGraph network using a directory of serialized DataSet objects The assumption here is that the directory contains a number of DataSet objects, each serialized using DataSet.save(OutputStream)
fit(String, int) - Method in class org.deeplearning4j.spark.impl.graph.SparkComputationGraph
fit(String, int, RecordReader) - Method in class org.deeplearning4j.spark.impl.layer.SparkDl4jLayer
Fit the layer based on the specified org.deeplearning4j.spark context text file
fit(JavaSparkContext, JavaRDD<LabeledPoint>) - Method in class org.deeplearning4j.spark.impl.layer.SparkDl4jLayer
Fit the given rdd given the context.
fit(RDD<DataSet>) - Method in class org.deeplearning4j.spark.impl.multilayer.SparkDl4jMultiLayer
Fit the DataSet RDD.
fit(JavaRDD<DataSet>) - Method in class org.deeplearning4j.spark.impl.multilayer.SparkDl4jMultiLayer
Fit the DataSet RDD
fit(String) - Method in class org.deeplearning4j.spark.impl.multilayer.SparkDl4jMultiLayer
Fit the SparkDl4jMultiLayer network using a directory of serialized DataSet objects The assumption here is that the directory contains a number of DataSet objects, each serialized using DataSet.save(OutputStream)
fit(String, int) - Method in class org.deeplearning4j.spark.impl.multilayer.SparkDl4jMultiLayer
fit() - Method in class org.deeplearning4j.spark.models.sequencevectors.SparkSequenceVectors
Deprecated.
fit() - Method in class org.deeplearning4j.spark.models.word2vec.SparkWord2Vec
Deprecated.
fitContinuousLabeledPoint(JavaRDD<LabeledPoint>) - Method in class org.deeplearning4j.spark.impl.multilayer.SparkDl4jMultiLayer
Fits a MultiLayerNetwork using Spark MLLib LabeledPoint instances This will convert labeled points that have continuous labels used for regression to the internal DL4J data format and train the model on that
fitDataSet(JavaRDD<DataSet>) - Method in class org.deeplearning4j.spark.impl.layer.SparkDl4jLayer
Fit a java rdd of dataset
fitFeaturized(MultiDataSetIterator) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearningHelper
Fit from a featurized dataset.
fitFeaturized(MultiDataSet) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearningHelper
 
fitFeaturized(DataSet) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearningHelper
 
fitFeaturized(DataSetIterator) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearningHelper
 
fitLabeledPoint(JavaRDD<LabeledPoint>) - Method in class org.deeplearning4j.spark.impl.multilayer.SparkDl4jMultiLayer
Fit a MultiLayerNetwork using Spark MLLib LabeledPoint instances.
fitLabelledDocuments(JavaRDD<LabelledDocument>) - Method in class org.deeplearning4j.spark.models.paragraphvectors.SparkParagraphVectors
This method builds ParagraphVectors model, expecting JavaRDD.
fitLists(JavaRDD<List<T>>) - Method in class org.deeplearning4j.spark.models.sequencevectors.SparkSequenceVectors
Utility method.
fitMulti(JavaRDD<MultiDataSet>) - Method in class org.deeplearning4j.spark.earlystopping.BaseSparkEarlyStoppingTrainer
 
fitMulti(JavaRDD<MultiDataSet>) - Method in class org.deeplearning4j.spark.earlystopping.SparkEarlyStoppingGraphTrainer
 
fitMulti(JavaRDD<MultiDataSet>) - Method in class org.deeplearning4j.spark.earlystopping.SparkEarlyStoppingTrainer
 
fitMultiDataSet(RDD<MultiDataSet>) - Method in class org.deeplearning4j.spark.impl.graph.SparkComputationGraph
Fit the ComputationGraph with the given data set
fitMultiDataSet(JavaRDD<MultiDataSet>) - Method in class org.deeplearning4j.spark.impl.graph.SparkComputationGraph
Fit the ComputationGraph with the given data set
fitMultiDataSet(String) - Method in class org.deeplearning4j.spark.impl.graph.SparkComputationGraph
Fit the SparkComputationGraph network using a directory of serialized MultiDataSet objects The assumption here is that the directory contains a number of serialized MultiDataSet objects
fitMultiDataSet(String, int) - Method in class org.deeplearning4j.spark.impl.graph.SparkComputationGraph
fitMultipleFiles(JavaPairRDD<String, String>) - Method in class org.deeplearning4j.spark.models.paragraphvectors.SparkParagraphVectors
This method builds ParagraphVectors model, expecting JavaPairRDD with key as label, and value as document-in-a-string.
fitPaths(JavaRDD<String>) - Method in class org.deeplearning4j.spark.impl.graph.SparkComputationGraph
Fit the network using a list of paths for serialized DataSet objects.
fitPaths(JavaRDD<String>) - Method in class org.deeplearning4j.spark.impl.multilayer.SparkDl4jMultiLayer
Fit the network using a list of paths for serialized DataSet objects.
fitPathsMultiDataSet(JavaRDD<String>) - Method in class org.deeplearning4j.spark.impl.graph.SparkComputationGraph
Fit the network using a list of paths for serialized MultiDataSet objects.
fitSentences(JavaRDD<String>) - Method in class org.deeplearning4j.spark.models.word2vec.SparkWord2Vec
 
fitSequences(JavaRDD<Sequence<T>>) - Method in class org.deeplearning4j.spark.models.sequencevectors.SparkSequenceVectors
Base training entry point
FixedClusterCountStrategy - Class in org.deeplearning4j.clustering.algorithm.strategy
 
FixedClusterCountStrategy() - Constructor for class org.deeplearning4j.clustering.algorithm.strategy.FixedClusterCountStrategy
 
FixedClusterCountStrategy(Integer, String, boolean) - Constructor for class org.deeplearning4j.clustering.algorithm.strategy.FixedClusterCountStrategy
 
FixedIterationCountCondition - Class in org.deeplearning4j.clustering.algorithm.condition
 
FixedIterationCountCondition() - Constructor for class org.deeplearning4j.clustering.algorithm.condition.FixedIterationCountCondition
 
FixedIterationCountCondition(int) - Constructor for class org.deeplearning4j.clustering.algorithm.condition.FixedIterationCountCondition
 
FlatModelUtils<T extends SequenceElement> - Class in org.deeplearning4j.models.embeddings.reader.impl
This model reader is suited for model tests, and for cases where flat scan against elements is required.
FlatModelUtils() - Constructor for class org.deeplearning4j.models.embeddings.reader.impl.FlatModelUtils
 
FlatModelUtilsTest - Class in org.deeplearning4j.models.embeddings.reader.impl
These are temporary tests and will be removed after issue is solved.
FlatModelUtilsTest() - Constructor for class org.deeplearning4j.models.embeddings.reader.impl.FlatModelUtilsTest
 
flattenedGradients - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
 
flattenedGradients - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
flattenedParams - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
 
flattenedParams - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
flatteningOrderForVariable(String) - Method in class org.deeplearning4j.nn.gradient.DefaultGradient
 
flatteningOrderForVariable(String) - Method in interface org.deeplearning4j.nn.gradient.Gradient
Return the gradient flattening order for the specified variable, or null if it is not explicitly set
flattenToY(ModelInfo, GraphVertex[], List<String>, int) - Method in class org.deeplearning4j.ui.flow.FlowIterationListener
Deprecated.
This method returns all Layers connected to the currentInput
flattenToY(ModelInfo, GraphVertex[], List<String>, int) - Method in class org.deeplearning4j.ui.flow.RemoteFlowIterationListener
This method returns all Layers connected to the currentInput
floatIterable(int, int) - Static method in class org.deeplearning4j.datasets.iterator.AbstractDataSetIteratorTest
 
FloatsDataSetIterator - Class in org.deeplearning4j.datasets.iterator
float[] wrapper for DataSetIterator impementation.
FloatsDataSetIterator(Iterable<Pair<float[], float[]>>, int) - Constructor for class org.deeplearning4j.datasets.iterator.FloatsDataSetIterator
 
floatValue(StyleDiv.FloatValue) - Method in class org.deeplearning4j.ui.components.component.style.StyleDiv.Builder
CSS float styling option
FlowIterationListener - Class in org.deeplearning4j.ui.flow
Deprecated.
Use StatsListener and UIServer.attach(StatsStorage). See examples repo for how.
FlowIterationListener() - Constructor for class org.deeplearning4j.ui.flow.FlowIterationListener
Deprecated.
 
FlowIterationListener(int) - Constructor for class org.deeplearning4j.ui.flow.FlowIterationListener
Deprecated.
Creates IterationListener and attaches it local UIServer instance
FlowIterationListener(String, int, int) - Constructor for class org.deeplearning4j.ui.flow.FlowIterationListener
Deprecated.
FlowIterationListener(StatsStorageRouter, int, String, String, boolean) - Constructor for class org.deeplearning4j.ui.flow.FlowIterationListener
Deprecated.
 
FlowIterationListener(UiConnectionInfo, int) - Constructor for class org.deeplearning4j.ui.flow.FlowIterationListener
Deprecated.
FlowIterationListenerTest - Class in org.deeplearning4j.ui.flow
This set of tests addresses different stages of model state serialization for later visualization
FlowIterationListenerTest() - Constructor for class org.deeplearning4j.ui.flow.FlowIterationListenerTest
 
FlowListenerModule - Class in org.deeplearning4j.ui.module.flow
Module for FlowIterationListener
FlowListenerModule() - Constructor for class org.deeplearning4j.ui.module.flow.FlowListenerModule
 
FlowStaticPersistable - Class in org.deeplearning4j.ui.flow.data
Created by Alex on 25/10/2016.
FlowStaticPersistable() - Constructor for class org.deeplearning4j.ui.flow.data.FlowStaticPersistable
 
FlowUpdatePersistable - Class in org.deeplearning4j.ui.flow.data
Created by Alex on 25/10/2016.
FlowUpdatePersistable() - Constructor for class org.deeplearning4j.ui.flow.data.FlowUpdatePersistable
 
FoldBetweenPartitionFunction - Class in org.deeplearning4j.spark.text.functions
 
FoldBetweenPartitionFunction(Broadcast<Counter<Integer>>) - Constructor for class org.deeplearning4j.spark.text.functions.FoldBetweenPartitionFunction
 
foldersToScan - Variable in class org.deeplearning4j.text.documentiterator.FileLabelAwareIterator.Builder
 
foldersToScan - Variable in class org.deeplearning4j.text.documentiterator.FilenamesLabelAwareIterator.Builder
 
FoldWithinPartitionFunction - Class in org.deeplearning4j.spark.text.functions
 
FoldWithinPartitionFunction(Accumulator<Counter<Integer>>) - Constructor for class org.deeplearning4j.spark.text.functions.FoldWithinPartitionFunction
 
font(String) - Method in class org.deeplearning4j.ui.components.text.style.StyleText.Builder
Specify the font to be used for the text
fontSize(double) - Method in class org.deeplearning4j.ui.components.text.style.StyleText.Builder
Size of the font (pt)
foreach(JavaDStream<K>, Function<JavaRDD<K>, Void>) - Static method in class org.deeplearning4j.streaming.pipeline.spark.StreamingContextUtils
 
forgetGateBiasInit(double) - Method in class org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM.Builder
Set forget gate bias initalizations.
forgetGateBiasInit(double) - Method in class org.deeplearning4j.nn.conf.layers.GravesLSTM.Builder
Set forget gate bias initalizations.
format(PatriciaTrie<V>) - Method in class com.atilika.kuromoji.trie.PatriciaTrieFormatter
Format trie
format(PatriciaTrie<V>, boolean) - Method in class com.atilika.kuromoji.trie.PatriciaTrieFormatter
Format trie
format(PatriciaTrie<V>, File) - Method in class com.atilika.kuromoji.trie.PatriciaTrieFormatter
Format trie and write to file
format(PatriciaTrie<V>, File, boolean) - Method in class com.atilika.kuromoji.trie.PatriciaTrieFormatter
Format trie and write to file
format(ViterbiLattice) - Method in class com.atilika.kuromoji.viterbi.ViterbiFormatter
 
format(ViterbiLattice, List<ViterbiNode>) - Method in class com.atilika.kuromoji.viterbi.ViterbiFormatter
 
formatPercent(double, int) - Static method in class org.deeplearning4j.util.StringUtils
Format a percentage for presentation to the user.
formatTime(long) - Static method in class org.deeplearning4j.util.StringUtils
Given the time in long milliseconds, returns a String in the format Xhrs, Ymins, Z sec.
formatTimeDiff(long, long) - Static method in class org.deeplearning4j.util.StringUtils
Given a finish and start time in long milliseconds, returns a String in the format Xhrs, Ymins, Z sec, for the time difference between two times.
frame - Variable in class org.deeplearning4j.datasets.mnist.draw.DrawReconstruction
 
frame - Variable in class org.deeplearning4j.spark.models.sequencevectors.learning.elements.SparkCBOW
 
frame - Variable in class org.deeplearning4j.spark.models.sequencevectors.learning.elements.SparkSkipGram
 
frameSequence(Sequence<ShallowSequenceElement>, AtomicLong, double) - Method in class org.deeplearning4j.spark.models.sequencevectors.learning.elements.SparkCBOW
 
frameSequence(Sequence<ShallowSequenceElement>, AtomicLong, double) - Method in class org.deeplearning4j.spark.models.sequencevectors.learning.elements.SparkSkipGram
 
frameSequence(Sequence<ShallowSequenceElement>, AtomicLong, double) - Method in class org.deeplearning4j.spark.models.sequencevectors.learning.sequence.SparkDBOW
 
frameSequence(Sequence<ShallowSequenceElement>, AtomicLong, double) - Method in class org.deeplearning4j.spark.models.sequencevectors.learning.sequence.SparkDM
 
frameSequence(Sequence<ShallowSequenceElement>, AtomicLong, double) - Method in interface org.deeplearning4j.spark.models.sequencevectors.learning.SparkElementsLearningAlgorithm
 
from - Variable in class org.deeplearning4j.nn.conf.graph.UnstackVertex
 
fromBinary(JavaPairRDD<String, PortableDataStream>, RecordReader) - Static method in class org.deeplearning4j.spark.util.MLLibUtil
Convert a traditional sc.binaryFiles in to something usable for machine learning
fromBinary(JavaRDD<Tuple2<String, PortableDataStream>>, RecordReader) - Static method in class org.deeplearning4j.spark.util.MLLibUtil
Convert a traditional sc.binaryFiles in to something usable for machine learning
fromBytesSerializable(byte[]) - Static method in class org.deeplearning4j.ui.stats.impl.SbeUtil
 
fromContinuousLabeledPoint(JavaSparkContext, JavaRDD<LabeledPoint>) - Static method in class org.deeplearning4j.spark.util.MLLibUtil
fromContinuousLabeledPoint(JavaRDD<LabeledPoint>) - Static method in class org.deeplearning4j.spark.util.MLLibUtil
Converts a continuous JavaRDD LabeledPoint to a JavaRDD DataSet.
fromContinuousLabeledPoint(JavaRDD<LabeledPoint>, boolean) - Static method in class org.deeplearning4j.spark.util.MLLibUtil
Converts a continuous JavaRDD LabeledPoint to a JavaRDD DataSet.
fromDataSet(JavaSparkContext, JavaRDD<DataSet>) - Static method in class org.deeplearning4j.spark.util.MLLibUtil
fromDataSet(JavaRDD<DataSet>) - Static method in class org.deeplearning4j.spark.util.MLLibUtil
Convert an rdd of data set in to labeled point.
fromDataSet(JavaRDD<DataSet>, boolean) - Static method in class org.deeplearning4j.spark.util.MLLibUtil
Convert an rdd of data set in to labeled point.
fromFile(String, String) - Static method in class org.deeplearning4j.util.StringGrid
 
fromInput(InputStream, String) - Static method in class org.deeplearning4j.util.StringGrid
 
fromJson(String) - Static method in class org.deeplearning4j.models.embeddings.loader.VectorsConfiguration
 
fromJson(String) - Static method in class org.deeplearning4j.models.word2vec.wordstore.VocabularyWord
 
fromJson(String) - Static method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
Create a computation graph configuration from json
fromJson(String) - Static method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
Create a neural net configuration from json
fromJson(String) - Static method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
Create a neural net configuration from json
fromJson(String) - Static method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
 
fromJson(String) - Static method in class org.deeplearning4j.spark.impl.paramavg.ParameterAveragingTrainingMaster
Create a ParameterAveragingTrainingMaster instance by deserializing a JSON string that has been serialized with ParameterAveragingTrainingMaster.toJson()
fromLabeledPoint(JavaRDD<LabeledPoint>, int, int) - Static method in class org.deeplearning4j.spark.util.MLLibUtil
Convert an rdd of labeled point based on the specified batch size in to data set
fromLabeledPoint(JavaSparkContext, JavaRDD<LabeledPoint>, int) - Static method in class org.deeplearning4j.spark.util.MLLibUtil
fromLabeledPoint(JavaRDD<LabeledPoint>, int) - Static method in class org.deeplearning4j.spark.util.MLLibUtil
Converts JavaRDD labeled points to JavaRDD datasets.
fromLabeledPoint(JavaRDD<LabeledPoint>, int, boolean) - Static method in class org.deeplearning4j.spark.util.MLLibUtil
Converts JavaRDD labeled points to JavaRDD DataSets.
fromPair(Pair<InMemoryLookupTable, VocabCache>) - Static method in class org.deeplearning4j.models.embeddings.loader.WordVectorSerializer
Load word vectors from the given pair
fromString(String, String) - Static method in class org.deeplearning4j.util.MathUtils
This will take a given string and separator and convert it to an equivalent double array.
fromTableAndVocab(WeightLookupTable, VocabCache) - Static method in class org.deeplearning4j.models.embeddings.loader.WordVectorSerializer
Load word vectors for the given vocab and table
fromYaml(String) - Static method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
Create a neural net configuration from json
fromYaml(String) - Static method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
Create a neural net configuration from json
fromYaml(String) - Static method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
Create a neural net configuration from json
fromYaml(String) - Static method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
 
fromYaml(String) - Static method in class org.deeplearning4j.spark.impl.paramavg.ParameterAveragingTrainingMaster
Create a ParameterAveragingTrainingMaster instance by deserializing a YAML string that has been serialized with ParameterAveragingTrainingMaster.toYaml()
FrozenLayer<LayerT extends Layer> - Class in org.deeplearning4j.nn.layers
For purposes of transfer learning A frozen layers wraps another dl4j layer within it.
FrozenLayer(LayerT) - Constructor for class org.deeplearning4j.nn.layers.FrozenLayer
 
FrozenLayerTest - Class in org.deeplearning4j.nn.layers
Created by susaneraly on 2/5/17.
FrozenLayerTest() - Constructor for class org.deeplearning4j.nn.layers.FrozenLayerTest
 
function(Function<T, Result>) - Static method in class org.deeplearning4j.ui.play.misc.FunctionUtil
 
function0(Supplier<Result>) - Static method in class org.deeplearning4j.ui.play.misc.FunctionUtil
 
FunctionType - Enum in org.deeplearning4j.ui.api
Enumeration for the type of function.
FunctionUtil - Class in org.deeplearning4j.ui.play.misc
Utility methods for Routing
FunctionUtil() - Constructor for class org.deeplearning4j.ui.play.misc.FunctionUtil
 
fwdPassOutput - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
 
fwdPassOutputAsArrays - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
 
FwdPassReturn - Class in org.deeplearning4j.nn.layers.recurrent
Created by benny on 12/31/15.
FwdPassReturn() - Constructor for class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
 
fz - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
 
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Skip navigation links