- cache - Variable in class org.deeplearning4j.bagofwords.vectorizer.Builder
-
Deprecated.
- cache(VocabCache) - Method in class org.deeplearning4j.bagofwords.vectorizer.Builder
-
Deprecated.
- cache(VocabCache<T>) - Method in class org.deeplearning4j.models.embeddings.inmemory.InMemoryLookupTable.Builder
-
- cache(VocabCache<T>) - Method in class org.deeplearning4j.models.glove.GloveWeightLookupTable.Builder
-
Deprecated.
- cache - Variable in class org.deeplearning4j.text.sentenceiterator.FileSentenceIterator
-
- calcBackpropGradients(boolean, INDArray...) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Do backprop (gradient calculation)
- calcBackpropGradients(INDArray, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Calculate gradients and errors.
- calcExponentialDecay(double, double, double) - Method in class org.deeplearning4j.nn.updater.TestDecayPolicies
-
- calcGradient(Gradient, INDArray) - Method in interface org.deeplearning4j.nn.api.Layer
-
- calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.ActivationLayer
-
- calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.DropoutLayer
-
- calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
-
- calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
-
- calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
-
- calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- calcInverseDecay(double, double, double, double) - Method in class org.deeplearning4j.nn.updater.TestDecayPolicies
-
- calcL1(boolean) - Method in interface org.deeplearning4j.nn.api.Layer
-
Calculate the l1 regularization term
0.0 if regularization is not used.
- calcL1() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Calculate the L1 regularization term for all layers in the entire network.
- calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.ActivationLayer
-
- calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.BasePretrainNetwork
-
- calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.DropoutLayer
-
- calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
-
- calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.pooling.GlobalPoolingLayer
-
- calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
-
- calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
-
- calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- calcL1(boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- calcL2(boolean) - Method in interface org.deeplearning4j.nn.api.Layer
-
Calculate the l2 regularization term
0.0 if regularization is not used.
- calcL2() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Calculate the L2 regularization term for all layers in the entire network.
- calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.ActivationLayer
-
- calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.BasePretrainNetwork
-
- calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.DropoutLayer
-
- calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
-
- calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.pooling.GlobalPoolingLayer
-
- calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
-
- calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
-
- calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- calcL2(boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- calcPolyDecay(double, double, double, double) - Method in class org.deeplearning4j.nn.updater.TestDecayPolicies
-
- calcSigmoidDecay(double, double, double, double) - Method in class org.deeplearning4j.nn.updater.TestDecayPolicies
-
- calcStepDecay(double, double, double, double) - Method in class org.deeplearning4j.nn.updater.TestDecayPolicies
-
- calcTorchStepDecay(double, double) - Method in class org.deeplearning4j.nn.updater.TestDecayPolicies
-
- calculate(INDArray, int, double) - Method in class org.deeplearning4j.plot.Tsne
-
- calculateAUC() - Method in class org.deeplearning4j.eval.ROC
-
Calculate the AUC - Area Under Curve
Utilizes trapezoidal integration internally
- calculateAUC(int) - Method in class org.deeplearning4j.eval.ROCBinary
-
Calculate the AUC - Area Under Curve
Utilizes trapezoidal integration internally
- calculateAUC(int) - Method in class org.deeplearning4j.eval.ROCMultiClass
-
Calculate the AUC - Area Under Curve
Utilizes trapezoidal integration internally
- calculateAverageAUC() - Method in class org.deeplearning4j.eval.ROCMultiClass
-
Calculate the average (one-vs-all) AUC for all classes
- calculateProb(int, int) - Method in class org.deeplearning4j.graph.models.embeddings.InMemoryGraphLookupTable
-
Calculate the probability of the second vertex given the first vertex
i.e., P(v_second | v_first)
- calculateScore(MultiLayerNetwork) - Method in class org.deeplearning4j.earlystopping.scorecalc.DataSetLossCalculator
-
- calculateScore(ComputationGraph) - Method in class org.deeplearning4j.earlystopping.scorecalc.DataSetLossCalculatorCG
-
- calculateScore(T) - Method in interface org.deeplearning4j.earlystopping.scorecalc.ScoreCalculator
-
Calculate the score for the given MultiLayerNetwork
- calculateScore(int, int) - Method in class org.deeplearning4j.graph.models.embeddings.InMemoryGraphLookupTable
-
Calculate score.
- calculateScore(MultiLayerNetwork) - Method in class org.deeplearning4j.spark.earlystopping.SparkDataSetLossCalculator
-
- calculateScore(ComputationGraph) - Method in class org.deeplearning4j.spark.earlystopping.SparkLossCalculatorComputationGraph
-
- calculateScore(JavaRDD<DataSet>, boolean) - Method in class org.deeplearning4j.spark.impl.graph.SparkComputationGraph
-
Calculate the score for all examples in the provided JavaRDD<DataSet>
, either by summing
or averaging over the entire data set.
- calculateScore(JavaRDD<DataSet>, boolean, int) - Method in class org.deeplearning4j.spark.impl.graph.SparkComputationGraph
-
Calculate the score for all examples in the provided JavaRDD<DataSet>
, either by summing
or averaging over the entire data set.
- calculateScore(RDD<DataSet>, boolean) - Method in class org.deeplearning4j.spark.impl.multilayer.SparkDl4jMultiLayer
-
- calculateScore(JavaRDD<DataSet>, boolean) - Method in class org.deeplearning4j.spark.impl.multilayer.SparkDl4jMultiLayer
-
Calculate the score for all examples in the provided JavaRDD<DataSet>
, either by summing
or averaging over the entire data set.
- calculateScore(JavaRDD<DataSet>, boolean, int) - Method in class org.deeplearning4j.spark.impl.multilayer.SparkDl4jMultiLayer
-
Calculate the score for all examples in the provided JavaRDD<DataSet>
, either by summing
or averaging over the entire data set.
- calculateScoreMultiDataSet(JavaRDD<MultiDataSet>, boolean) - Method in class org.deeplearning4j.spark.impl.graph.SparkComputationGraph
-
Calculate the score for all examples in the provided JavaRDD<MultiDataSet>
, either by summing
or averaging over the entire data set.
- calculateScoreMultiDataSet(JavaRDD<MultiDataSet>, boolean, int) - Method in class org.deeplearning4j.spark.impl.graph.SparkComputationGraph
-
Calculate the score for all examples in the provided JavaRDD<MultiDataSet>
, either by summing
or averaging over the entire data set.
- call(I) - Method in interface org.deeplearning4j.berkeley.MyMethod
-
- call() - Method in class org.deeplearning4j.models.paragraphvectors.ParagraphVectors.BlindInferenceCallable
-
- call() - Method in class org.deeplearning4j.models.paragraphvectors.ParagraphVectors.InferenceCallable
-
- call(Integer, Iterator<DataSet>) - Method in class org.deeplearning4j.spark.data.BatchAndExportDataSetsFunction
-
- call(Integer, Iterator<MultiDataSet>) - Method in class org.deeplearning4j.spark.data.BatchAndExportMultiDataSetsFunction
-
- call(Iterator<DataSet>) - Method in class org.deeplearning4j.spark.data.DataSetExportFunction
-
- call(Iterator<MultiDataSet>) - Method in class org.deeplearning4j.spark.data.MultiDataSetExportFunction
-
- call(String) - Method in class org.deeplearning4j.spark.data.PathToDataSetFunction
-
- call(String) - Method in class org.deeplearning4j.spark.data.PathToMultiDataSetFunction
-
- call(Tuple2<Text, BytesWritable>) - Method in class org.deeplearning4j.spark.datavec.DataVecByteDataSetFunction
-
- call(List<Writable>) - Method in class org.deeplearning4j.spark.datavec.DataVecDataSetFunction
-
- call(List<List<Writable>>) - Method in class org.deeplearning4j.spark.datavec.DataVecSequenceDataSetFunction
-
- call(Tuple2<List<List<Writable>>, List<List<Writable>>>) - Method in class org.deeplearning4j.spark.datavec.DataVecSequencePairDataSetFunction
-
- call(Iterator<String>) - Method in class org.deeplearning4j.spark.datavec.export.StringToDataSetExportFunction
-
- call(DataSet) - Method in class org.deeplearning4j.spark.datavec.MiniBatchTests.DataSetAssertionFunction
-
- call(String) - Method in class org.deeplearning4j.spark.datavec.RecordReaderFunction
-
- call(INDArray, INDArray) - Method in class org.deeplearning4j.spark.impl.common.Add
-
- call(Integer, Iterator<T>) - Method in class org.deeplearning4j.spark.impl.common.CountPartitionsFunction
-
- call(PortableDataStream) - Method in class org.deeplearning4j.spark.impl.common.LoadSerializedDataSetFunction
-
- call(Tuple2<Integer, Double>, Tuple2<Integer, Double>) - Method in class org.deeplearning4j.spark.impl.common.reduce.IntDoubleReduceFunction
-
- call(Integer, Iterator<T>) - Method in class org.deeplearning4j.spark.impl.common.repartition.AssignIndexFunction
-
- call(Iterator<Tuple2<K, INDArray>>) - Method in class org.deeplearning4j.spark.impl.common.score.BaseVaeScoreWithKeyFunctionAdapter
-
- call(Integer, Iterator<T>) - Method in class org.deeplearning4j.spark.impl.common.SplitPartitionsFunction
-
- call(Integer, Iterator<Tuple2<T, U>>) - Method in class org.deeplearning4j.spark.impl.common.SplitPartitionsFunction2
-
- call(DataSet) - Method in class org.deeplearning4j.spark.impl.graph.dataset.DataSetToMultiDataSetFn
-
- call(Tuple2<K, DataSet>) - Method in class org.deeplearning4j.spark.impl.graph.dataset.PairDataSetToMultiDataSetFn
-
- call(Tuple2<K, INDArray[]>) - Method in class org.deeplearning4j.spark.impl.graph.scoring.ArrayPairToPair
-
- call(Tuple2<K, INDArray>) - Method in class org.deeplearning4j.spark.impl.graph.scoring.PairToArrayPair
-
- call(DataSet) - Method in class org.deeplearning4j.spark.impl.layer.DL4jWorker
-
- call(T, T) - Method in class org.deeplearning4j.spark.impl.multilayer.evaluation.IEvaluationReduceFunction
-
- call(ParameterAveragingAggregationTuple, ParameterAveragingTrainingResult) - Method in class org.deeplearning4j.spark.impl.paramavg.aggregator.ParameterAveragingElementAddFunction
-
- call(ParameterAveragingAggregationTuple, ParameterAveragingAggregationTuple) - Method in class org.deeplearning4j.spark.impl.paramavg.aggregator.ParameterAveragingElementCombineFunction
-
- call(Pair<List<String>, AtomicLong>) - Method in class org.deeplearning4j.spark.models.embeddings.glove.cooccurrences.CoOccurrenceCalculator
-
- call(CounterMap<String, String>, CounterMap<String, String>) - Method in class org.deeplearning4j.spark.models.embeddings.glove.cooccurrences.CoOccurrenceCounts
-
- call(Triple<VocabWord, VocabWord, Double>) - Method in class org.deeplearning4j.spark.models.embeddings.glove.GlovePerformer
-
- call(Triple<String, String, Double>) - Method in class org.deeplearning4j.spark.models.embeddings.glove.VocabWordPairs
-
- call(Iterator<Tuple2<List<VocabWord>, Long>>) - Method in class org.deeplearning4j.spark.models.embeddings.word2vec.FirstIterationFunctionAdapter
-
- call(Map.Entry<VocabWord, INDArray>) - Method in class org.deeplearning4j.spark.models.embeddings.word2vec.MapToPairFunction
-
- call(Word2VecFuncCall) - Method in class org.deeplearning4j.spark.models.embeddings.word2vec.SentenceBatch
-
Deprecated.
- call(Pair<List<VocabWord>, AtomicLong>) - Method in class org.deeplearning4j.spark.models.embeddings.word2vec.Word2VecPerformer
-
Deprecated.
- call(Pair<List<VocabWord>, AtomicLong>) - Method in class org.deeplearning4j.spark.models.embeddings.word2vec.Word2VecPerformerVoid
-
Deprecated.
- call(Tuple2<List<VocabWord>, Long>) - Method in class org.deeplearning4j.spark.models.embeddings.word2vec.Word2VecSetup
-
Deprecated.
- call(LabelledDocument) - Method in class org.deeplearning4j.spark.models.paragraphvectors.functions.DocumentSequenceConvertFunction
-
- call(Tuple2<String, String>) - Method in class org.deeplearning4j.spark.models.paragraphvectors.functions.KeySequenceConvertFunction
-
- call(Sequence<T>) - Method in class org.deeplearning4j.spark.models.sequencevectors.functions.CountFunction
-
- call(T) - Method in class org.deeplearning4j.spark.models.sequencevectors.functions.DistributedFunction
-
- call(T) - Method in class org.deeplearning4j.spark.models.sequencevectors.functions.ExportFunction
-
- call(Sequence<T>) - Method in class org.deeplearning4j.spark.models.sequencevectors.functions.ExtraCountFunction
-
- call(List<T>) - Method in class org.deeplearning4j.spark.models.sequencevectors.functions.ListSequenceConvertFunction
-
- call(Iterator<Sequence<T>>) - Method in class org.deeplearning4j.spark.models.sequencevectors.functions.PartitionTrainingFunction
-
- call(String) - Method in class org.deeplearning4j.spark.models.sequencevectors.functions.TokenizerFunction
-
- call(Sequence<T>) - Method in class org.deeplearning4j.spark.models.sequencevectors.functions.TrainingFunction
-
- call(Integer, Iterator<AtomicLong>) - Method in class org.deeplearning4j.spark.text.functions.FoldBetweenPartitionFunction
-
- call(Integer, Iterator<AtomicLong>) - Method in class org.deeplearning4j.spark.text.functions.FoldWithinPartitionFunction
-
- call(Pair<List<String>, AtomicLong>) - Method in class org.deeplearning4j.spark.text.functions.GetSentenceCountFunction
-
- call(Iterator<?>) - Method in class org.deeplearning4j.spark.text.functions.MapPerPartitionVoidFunction
-
- call(AtomicLong, AtomicLong) - Method in class org.deeplearning4j.spark.text.functions.ReduceSentenceCount
-
- call(String) - Method in class org.deeplearning4j.spark.text.functions.TokenizerFunction
-
- call(List<String>) - Method in class org.deeplearning4j.spark.text.functions.UpdateWordFreqAccumulatorFunction
-
- call(Pair<List<String>, AtomicLong>) - Method in class org.deeplearning4j.spark.text.functions.WordsListToVocabWordsFunction
-
- call(Integer) - Method in class org.deeplearning4j.spark.text.TestFunction
-
- call(T) - Method in class org.deeplearning4j.spark.util.BaseDoubleFlatMapFunctionAdaptee
-
- call(T) - Method in class org.deeplearning4j.spark.util.BasePairFlatMapFunctionAdaptee
-
- call(JavaRDD<DataSet>) - Method in class org.deeplearning4j.streaming.pipeline.spark.PrintDataSet
-
- camelContext(CamelContext) - Method in class org.deeplearning4j.streaming.routes.CamelKafkaRouteBuilder.Builder
-
- CamelKafkaRouteBuilder - Class in org.deeplearning4j.streaming.routes
-
A Camel Java DSL Router
- CamelKafkaRouteBuilder() - Constructor for class org.deeplearning4j.streaming.routes.CamelKafkaRouteBuilder
-
- CamelKafkaRouteBuilder.Builder - Class in org.deeplearning4j.streaming.routes
-
- canDoBackward() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- canDoBackward() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Whether the GraphVertex can do backward pass.
- canDoBackward() - Method in class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
-
- canDoForward() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- canDoForward() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Whether the GraphVertex can do forward pass.
- canEqual(Object) - Method in class org.deeplearning4j.streaming.embedded.StringOption
-
- capacity - Variable in class org.deeplearning4j.parallelism.MagicQueue
-
- capitalize(String) - Static method in class org.deeplearning4j.berkeley.StringUtils
-
Uppercases the first character of a string.
- categoryMap - Variable in class com.atilika.kuromoji.compile.UnknownDictionaryCompiler
-
- CBOW<T extends SequenceElement> - Class in org.deeplearning4j.models.embeddings.learning.impl.elements
-
CBOW implementation for DeepLearning4j
- CBOW() - Constructor for class org.deeplearning4j.models.embeddings.learning.impl.elements.CBOW
-
- cbow(int, List<T>, int, AtomicLong, double, int) - Method in class org.deeplearning4j.models.embeddings.learning.impl.elements.CBOW
-
- Cell - Class in org.deeplearning4j.clustering.quadtree
-
A cell representing a bounding box forthe quad tree
- Cell(double, double, double, double) - Constructor for class org.deeplearning4j.clustering.quadtree.Cell
-
- Cell - Class in org.deeplearning4j.clustering.sptree
-
- Cell(int) - Constructor for class org.deeplearning4j.clustering.sptree.Cell
-
- CENTER_KEY - Static variable in class org.deeplearning4j.nn.params.CenterLossParamInitializer
-
- CenterLossOutputLayer - Class in org.deeplearning4j.nn.conf.layers
-
Center loss is similar to triplet loss except that it enforces
intraclass consistency and doesn't require feed forward of multiple
examples.
- CenterLossOutputLayer(CenterLossOutputLayer.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer
-
- CenterLossOutputLayer - Class in org.deeplearning4j.nn.layers.training
-
Center loss is similar to triplet loss except that it enforces
intraclass consistency and doesn't require feed forward of multiple
examples.
- CenterLossOutputLayer(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.training.CenterLossOutputLayer
-
- CenterLossOutputLayer(NeuralNetConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.layers.training.CenterLossOutputLayer
-
- CenterLossOutputLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- CenterLossOutputLayerTest - Class in org.deeplearning4j.nn.layers
-
Test CenterLossOutputLayer.
- CenterLossOutputLayerTest() - Constructor for class org.deeplearning4j.nn.layers.CenterLossOutputLayerTest
-
- CenterLossParamInitializer - Class in org.deeplearning4j.nn.params
-
Initialize Center Loss params.
- CenterLossParamInitializer() - Constructor for class org.deeplearning4j.nn.params.CenterLossParamInitializer
-
- CGVaeReconstructionErrorWithKeyFunction<K> - Class in org.deeplearning4j.spark.impl.graph.scoring
-
Function to calculate the reconstruction error for a variational autoencoder, that is the first layer in a
ComputationGraph.
Note that the VAE must be using a loss function, not a
ReconstructionDistribution
Also note that scoring is batched for computational efficiency.
- CGVaeReconstructionErrorWithKeyFunction(Broadcast<INDArray>, Broadcast<String>, int) - Constructor for class org.deeplearning4j.spark.impl.graph.scoring.CGVaeReconstructionErrorWithKeyFunction
-
- CGVaeReconstructionProbWithKeyFunction<K> - Class in org.deeplearning4j.spark.impl.graph.scoring
-
Function to calculate the reconstruction probability for a variational autoencoder, that is the first layer in a
ComputationGraph.
Note that scoring is batched for computational efficiency.
- CGVaeReconstructionProbWithKeyFunction(Broadcast<INDArray>, Broadcast<String>, boolean, int, int) - Constructor for class org.deeplearning4j.spark.impl.graph.scoring.CGVaeReconstructionProbWithKeyFunction
-
- channels - Static variable in class org.deeplearning4j.datasets.iterator.impl.CifarDataSetIterator
-
- CHARACTER_DEFINITIONS_FILENAME - Static variable in class com.atilika.kuromoji.dict.CharacterDefinitions
-
- CharacterDefinitions - Class in com.atilika.kuromoji.dict
-
- CharacterDefinitions(int[][], int[][], String[]) - Constructor for class com.atilika.kuromoji.dict.CharacterDefinitions
-
- characterDefinitions - Variable in class com.atilika.kuromoji.TokenizerBase.Builder
-
- CharacterDefinitionsCompiler - Class in com.atilika.kuromoji.compile
-
- CharacterDefinitionsCompiler(OutputStream) - Constructor for class com.atilika.kuromoji.compile.CharacterDefinitionsCompiler
-
- CharacterDefinitionsCompilerTest - Class in com.atilika.kuromoji.compile
-
- CharacterDefinitionsCompilerTest() - Constructor for class com.atilika.kuromoji.compile.CharacterDefinitionsCompilerTest
-
- Chart - Class in org.deeplearning4j.ui.components.chart
-
Abstract class for charts
- Chart(String) - Constructor for class org.deeplearning4j.ui.components.chart.Chart
-
- Chart(String, Chart.Builder) - Constructor for class org.deeplearning4j.ui.components.chart.Chart
-
- Chart.Builder<T extends Chart.Builder<T>> - Class in org.deeplearning4j.ui.components.chart
-
- CHART_MAX_POINTS_PROPERTY - Static variable in class org.deeplearning4j.ui.module.train.TrainModule
-
- ChartHistogram - Class in org.deeplearning4j.ui.components.chart
-
Histogram chart, with pre-binned values.
- ChartHistogram(ChartHistogram.Builder) - Constructor for class org.deeplearning4j.ui.components.chart.ChartHistogram
-
- ChartHistogram() - Constructor for class org.deeplearning4j.ui.components.chart.ChartHistogram
-
- ChartHistogram.Builder - Class in org.deeplearning4j.ui.components.chart
-
- ChartHorizontalBar - Class in org.deeplearning4j.ui.components.chart
-
- ChartHorizontalBar() - Constructor for class org.deeplearning4j.ui.components.chart.ChartHorizontalBar
-
- ChartHorizontalBar.Builder - Class in org.deeplearning4j.ui.components.chart
-
- ChartLine - Class in org.deeplearning4j.ui.components.chart
-
Line chart with multiple independent series
- ChartLine() - Constructor for class org.deeplearning4j.ui.components.chart.ChartLine
-
- ChartLine.Builder - Class in org.deeplearning4j.ui.components.chart
-
- ChartScatter - Class in org.deeplearning4j.ui.components.chart
-
Scatter chart
- ChartScatter() - Constructor for class org.deeplearning4j.ui.components.chart.ChartScatter
-
- ChartScatter.Builder - Class in org.deeplearning4j.ui.components.chart
-
- ChartStackedArea - Class in org.deeplearning4j.ui.components.chart
-
Stacked area chart (no normalization), with multiple series.
- ChartStackedArea() - Constructor for class org.deeplearning4j.ui.components.chart.ChartStackedArea
-
- ChartStackedArea(ChartStackedArea.Builder) - Constructor for class org.deeplearning4j.ui.components.chart.ChartStackedArea
-
- ChartStackedArea.Builder - Class in org.deeplearning4j.ui.components.chart
-
- ChartTimeline - Class in org.deeplearning4j.ui.components.chart
-
A timeline/swimlane chart with zoom/scroll functionality.
- ChartTimeline() - Constructor for class org.deeplearning4j.ui.components.chart.ChartTimeline
-
- ChartTimeline.Builder - Class in org.deeplearning4j.ui.components.chart
-
- ChartTimeline.TimelineEntry - Class in org.deeplearning4j.ui.components.chart
-
- checkForUnsupportedConfigurations(Map<String, Object>, boolean) - Static method in class org.deeplearning4j.nn.modelimport.keras.KerasLayer
-
Checks whether layer config contains unsupported options.
- checkGradients(MultiLayerNetwork, double, double, double, boolean, boolean, INDArray, INDArray) - Static method in class org.deeplearning4j.gradientcheck.GradientCheckUtil
-
Check backprop gradients for a MultiLayerNetwork.
- checkGradients(ComputationGraph, double, double, double, boolean, boolean, INDArray[], INDArray[]) - Static method in class org.deeplearning4j.gradientcheck.GradientCheckUtil
-
Check backprop gradients for a ComputationGraph
- checkGradients() - Method in class org.deeplearning4j.graph.models.deepwalk.DeepWalkGradientCheck
-
- checkGradients2() - Method in class org.deeplearning4j.graph.models.deepwalk.DeepWalkGradientCheck
-
- checkGradientsPretrainLayer(Layer, double, double, double, boolean, boolean, INDArray, int) - Static method in class org.deeplearning4j.gradientcheck.GradientCheckUtil
-
Check backprop gradients for a pretrain layer
NOTE: gradient checking pretrain layers can be difficult...
- checkInitializationFF() - Method in class org.deeplearning4j.nn.layers.custom.TestCustomLayers
-
- checkKryoConfiguration(JavaSparkContext, Logger) - Static method in class org.deeplearning4j.spark.util.SparkUtils
-
Check the spark configuration for incorrect Kryo configuration, logging a warning message if necessary
- checkMaskArrayClearance() - Method in class org.deeplearning4j.nn.graph.ComputationGraphTestRNN
-
- checkMaskArrayClearance() - Method in class org.deeplearning4j.nn.multilayer.TestMasking
-
- checkMeanVarianceEstimate() - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalizationTest
-
- checkMeanVarianceEstimateCNN() - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalizationTest
-
- checkSerialization() - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalizationTest
-
- checkStorageEvents(Persistable) - Method in class org.deeplearning4j.ui.storage.BaseCollectionStatsStorage
-
- checkStorageEvents(Persistable) - Method in class org.deeplearning4j.ui.storage.sqlite.J7FileStatsStorage
-
- checkTerminalConditions(INDArray, double, double, int) - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
-
Check termination conditions
setup a search state
- checkTerminalConditions(INDArray, double, double, int) - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- checkTree() - Method in class org.deeplearning4j.models.embeddings.reader.impl.TreeModelUtils
-
- children() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- chiSquare2by2(int, int, int, int) - Static method in class org.deeplearning4j.berkeley.SloppyMath
-
Find a 2x2 chi-square value.
- choleskyFromMatrix(RealMatrix) - Method in class org.deeplearning4j.util.MathUtils
-
This will return the cholesky decomposition of
the given matrix
- CifarDataSetIterator - Class in org.deeplearning4j.datasets.iterator.impl
-
CifarDataSetIterator is an iterator for Cifar10 dataset explicitly
There is a special preProcessor used to normalize the dataset based on Sergey Zagoruyko example
https://github.com/szagoruyko/cifar.torch
- CifarDataSetIterator(int, int, boolean) - Constructor for class org.deeplearning4j.datasets.iterator.impl.CifarDataSetIterator
-
Loads images with given batchSize, numExamples, & version returned by the generator.
- CifarDataSetIterator(int, int, int[]) - Constructor for class org.deeplearning4j.datasets.iterator.impl.CifarDataSetIterator
-
Loads images with given batchSize, numExamples, & imgDim returned by the generator.
- CifarDataSetIterator(int, int, int[], boolean) - Constructor for class org.deeplearning4j.datasets.iterator.impl.CifarDataSetIterator
-
Loads images with given batchSize, numExamples, imgDim & version returned by the generator.
- CifarDataSetIterator(int, int) - Constructor for class org.deeplearning4j.datasets.iterator.impl.CifarDataSetIterator
-
Loads images with given batchSize & numExamples returned by the generator.
- CifarDataSetIterator(int, int[]) - Constructor for class org.deeplearning4j.datasets.iterator.impl.CifarDataSetIterator
-
Loads images with given batchSize & imgDim returned by the generator.
- CifarDataSetIterator(int, int, int[], boolean, boolean) - Constructor for class org.deeplearning4j.datasets.iterator.impl.CifarDataSetIterator
-
Loads images with given batchSize, numExamples, imgDim & version returned by the generator.
- CifarDataSetIterator(int, int, int[], int, ImageTransform, boolean, boolean) - Constructor for class org.deeplearning4j.datasets.iterator.impl.CifarDataSetIterator
-
Create Cifar data specific iterator
- clamp(int, int, int) - Static method in class org.deeplearning4j.util.MathUtils
-
Clamps the value to a discrete value
- classCount(Integer) - Method in class org.deeplearning4j.eval.Evaluation
-
Returns the number of times the given label
has actually occurred
- classForScore(Double) - Method in class org.deeplearning4j.text.corpora.sentiwordnet.SWN3
-
- Classifier - Interface in org.deeplearning4j.nn.api
-
A classifier (this is for supervised learning)
- classify(String) - Method in class org.deeplearning4j.text.corpora.sentiwordnet.SWN3
-
Classifies the given text
- classify(CAS) - Method in class org.deeplearning4j.text.corpora.sentiwordnet.SWN3
-
- classify(Sentence) - Method in class org.deeplearning4j.text.corpora.sentiwordnet.SWN3
-
- classifyPoint(Point) - Method in class org.deeplearning4j.clustering.cluster.ClusterSet
-
- classifyPoint(Point, boolean) - Method in class org.deeplearning4j.clustering.cluster.ClusterSet
-
- classifyPoint(ClusterSet, Point) - Static method in class org.deeplearning4j.clustering.cluster.ClusterUtils
-
- classifyPoints() - Method in class org.deeplearning4j.clustering.algorithm.BaseClusteringAlgorithm
-
- classifyPoints(List<Point>) - Method in class org.deeplearning4j.clustering.cluster.ClusterSet
-
- classifyPoints(List<Point>, boolean) - Method in class org.deeplearning4j.clustering.cluster.ClusterSet
-
- classifyPoints(ClusterSet, List<Point>, ExecutorService) - Static method in class org.deeplearning4j.clustering.cluster.ClusterUtils
-
Classify the set of points base on cluster centers.
- className - Variable in class org.deeplearning4j.nn.modelimport.keras.KerasLayer
-
- className - Variable in class org.deeplearning4j.nn.modelimport.keras.KerasModel
-
- ClassPathResource - Class in org.deeplearning4j.ui.standalone
-
Simple utility class used to get access to files at the classpath, or packed into jar.
- ClassPathResource(String) - Constructor for class org.deeplearning4j.ui.standalone.ClassPathResource
-
Builds new ClassPathResource object
- cleanup - Variable in class org.deeplearning4j.bagofwords.vectorizer.Builder
-
Deprecated.
- cleanup(boolean) - Method in class org.deeplearning4j.bagofwords.vectorizer.Builder
-
Deprecated.
- cleanup() - Method in interface org.deeplearning4j.text.invertedindex.InvertedIndex
-
Cleanup any resources used
- clear() - Method in class com.atilika.kuromoji.trie.PatriciaTrie
-
Clears this trie by removing all its key-value pairs
- clear() - Method in class org.deeplearning4j.berkeley.Counter
-
- clear() - Method in interface org.deeplearning4j.nn.api.Model
-
Clear input
- clear() - Method in class org.deeplearning4j.nn.gradient.DefaultGradient
-
- clear() - Method in interface org.deeplearning4j.nn.gradient.Gradient
-
Clear residual parameters (useful for returning a gradient and then clearing old objects)
- clear() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- clear() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- clear() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Clear the internal state (if any) of the GraphVertex.
- clear() - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- clear() - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- clear() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- clear() - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- clear() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- clear() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Clear the inputs.
- clear() - Method in class org.deeplearning4j.parallelism.ConcurrentHashSet
-
- clear() - Method in class org.deeplearning4j.parallelism.MagicQueue
-
- clear() - Method in class org.deeplearning4j.plot.BarnesHutTsne
-
- clear() - Method in class org.deeplearning4j.ui.stats.sbe.InitFieldsPresentEncoder
-
- clear() - Method in class org.deeplearning4j.ui.stats.sbe.UpdateFieldsPresentEncoder
-
- clear() - Method in class org.deeplearning4j.util.DiskBasedQueue
-
- clear() - Method in class org.deeplearning4j.util.MultiDimensionalMap
-
Removes all of the mappings from this map (optional operation).
- clear() - Method in class org.deeplearning4j.util.MultiDimensionalSet
-
Removes all of the elements from this applyTransformToDestination (optional operation).
- clearLayerMaskArrays() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- clearLayerMaskArrays() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- clearVariables() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- clone() - Method in interface org.deeplearning4j.api.storage.listener.RoutingIterationListener
-
- clone() - Method in class org.deeplearning4j.berkeley.PriorityQueue
-
Returns a clone of this priority queue.
- clone() - Method in class org.deeplearning4j.eval.ROC.CountsForThreshold
-
- clone() - Method in class org.deeplearning4j.eval.ROCBinary.CountsForThreshold
-
- clone() - Method in interface org.deeplearning4j.nn.api.Layer
-
Clone the layer
- clone() - Method in interface org.deeplearning4j.nn.api.Updater
-
- clone() - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
- clone() - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfigurationTest.StaticInnerGraphVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.distribution.Distribution
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.ElementWiseVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.GraphVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.L2NormalizeVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.L2Vertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.LayerVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.MergeVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.PreprocessorVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.rnn.DuplicateToTimeSeriesVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.rnn.LastTimeStepVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.ScaleVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.StackVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.SubsetVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.UnstackVertex
-
- clone() - Method in interface org.deeplearning4j.nn.conf.InputPreProcessor
-
- clone() - Method in class org.deeplearning4j.nn.conf.layers.ActivationLayer
-
- clone() - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization
-
- clone() - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
-
- clone() - Method in class org.deeplearning4j.nn.conf.layers.DropoutLayer
-
- clone() - Method in class org.deeplearning4j.nn.conf.layers.Layer
-
- clone() - Method in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization
-
- clone() - Method in class org.deeplearning4j.nn.conf.layers.Subsampling1DLayer
-
- clone() - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
-
- clone() - Method in class org.deeplearning4j.nn.conf.misc.TestGraphVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
- clone() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- clone() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
Creates and returns a deep copy of the configuration.
- clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.BaseInputPreProcessor
-
- clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.CnnToFeedForwardPreProcessor
-
- clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.CnnToRnnPreProcessor
-
- clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.ComposableInputPreProcessor
-
- clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.custom.MyCustomPreprocessor
-
- clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToCnnPreProcessor
-
- clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToRnnPreProcessor
-
- clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.RnnToCnnPreProcessor
-
- clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.RnnToFeedForwardPreProcessor
-
- clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.UnitVarianceProcessor
-
- clone() - Method in class org.deeplearning4j.nn.conf.stepfunctions.StepFunction
-
- clone() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- clone() - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- clone() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- clone() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- clone() - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- clone() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- clone() - Method in class org.deeplearning4j.nn.modelimport.keras.preprocessors.TensorFlowCnnToFeedForwardPreProcessor
-
- clone() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- clone() - Method in class org.deeplearning4j.nn.updater.graph.ComputationGraphUpdater
-
- clone() - Method in class org.deeplearning4j.nn.updater.LayerUpdater
-
- clone() - Method in class org.deeplearning4j.nn.updater.MultiLayerUpdater
-
- clone() - Method in class org.deeplearning4j.ui.stats.BaseStatsListener
-
- clone() - Method in class org.deeplearning4j.ui.stats.J7StatsListener
-
- clone() - Method in class org.deeplearning4j.ui.stats.StatsListener
-
- cloneCompGraphFrozen() - Method in class org.deeplearning4j.nn.layers.FrozenLayerTest
-
- cloneListener(IterationListener) - Static method in class org.deeplearning4j.parallelism.trainer.DefaultTrainer
-
- cloneMLNFrozen() - Method in class org.deeplearning4j.nn.layers.FrozenLayerTest
-
- close() - Method in interface org.deeplearning4j.api.storage.StatsStorage
-
Close any open resources (files, etc)
- close() - Method in class org.deeplearning4j.datasets.mnist.draw.DrawReconstruction
-
- close() - Method in class org.deeplearning4j.datasets.mnist.MnistManager
-
Close any resources opened by the manager.
- close() - Method in class org.deeplearning4j.models.embeddings.loader.WordVectorSerializer.BinaryReader
-
- close() - Method in class org.deeplearning4j.models.embeddings.loader.WordVectorSerializer.CSVReader
-
- close() - Method in class org.deeplearning4j.parallelism.ParallelWrapper
-
- close() - Method in class org.deeplearning4j.ui.storage.InMemoryStatsStorage
-
- close() - Method in class org.deeplearning4j.ui.storage.mapdb.MapDBStatsStorage
-
- close() - Method in class org.deeplearning4j.ui.storage.sqlite.J7FileStatsStorage
-
- Cluster - Class in org.deeplearning4j.clustering.cluster
-
- Cluster() - Constructor for class org.deeplearning4j.clustering.cluster.Cluster
-
- Cluster(Point, String) - Constructor for class org.deeplearning4j.clustering.cluster.Cluster
-
- clusterColumn(int) - Method in class org.deeplearning4j.util.StringGrid
-
- ClusterInfo - Class in org.deeplearning4j.clustering.cluster.info
-
- ClusterInfo() - Constructor for class org.deeplearning4j.clustering.cluster.info.ClusterInfo
-
- ClusterInfo(boolean) - Constructor for class org.deeplearning4j.clustering.cluster.info.ClusterInfo
-
- ClusteringAlgorithm - Interface in org.deeplearning4j.clustering.algorithm
-
- ClusteringAlgorithmCondition - Interface in org.deeplearning4j.clustering.algorithm.condition
-
- ClusteringOptimization - Class in org.deeplearning4j.clustering.algorithm.optimisation
-
- ClusteringOptimization() - Constructor for class org.deeplearning4j.clustering.algorithm.optimisation.ClusteringOptimization
-
- ClusteringOptimization(ClusteringOptimizationType, double) - Constructor for class org.deeplearning4j.clustering.algorithm.optimisation.ClusteringOptimization
-
- ClusteringOptimizationType - Enum in org.deeplearning4j.clustering.algorithm.optimisation
-
- ClusteringStrategy - Interface in org.deeplearning4j.clustering.algorithm.strategy
-
- ClusteringStrategyType - Enum in org.deeplearning4j.clustering.algorithm.strategy
-
- ClusterSet - Class in org.deeplearning4j.clustering.cluster
-
- ClusterSet() - Constructor for class org.deeplearning4j.clustering.cluster.ClusterSet
-
- ClusterSet(String) - Constructor for class org.deeplearning4j.clustering.cluster.ClusterSet
-
- ClusterSetInfo - Class in org.deeplearning4j.clustering.cluster.info
-
- ClusterSetInfo() - Constructor for class org.deeplearning4j.clustering.cluster.info.ClusterSetInfo
-
- ClusterSetInfo(boolean) - Constructor for class org.deeplearning4j.clustering.cluster.info.ClusterSetInfo
-
- ClusterSetup - Class in org.deeplearning4j.aws.ec2.provision
-
Sets up a DL4J cluster
- ClusterSetup(String[]) - Constructor for class org.deeplearning4j.aws.ec2.provision.ClusterSetup
-
- ClusterUtils - Class in org.deeplearning4j.clustering.cluster
-
Basic cluster utilities
- CNN1DGradientCheckTest - Class in org.deeplearning4j.gradientcheck
-
- CNN1DGradientCheckTest() - Constructor for class org.deeplearning4j.gradientcheck.CNN1DGradientCheckTest
-
- cnnEpsilon - Variable in class org.deeplearning4j.nn.layers.normalization.BatchNormalizationTest
-
- CNNGradientCheckTest - Class in org.deeplearning4j.gradientcheck
-
Created by nyghtowl on 9/1/15.
- CNNGradientCheckTest() - Constructor for class org.deeplearning4j.gradientcheck.CNNGradientCheckTest
-
- cnnInput - Variable in class org.deeplearning4j.nn.layers.normalization.BatchNormalizationTest
-
- cnnInputSize - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
Deprecated.
- cnnInputSize(int, int, int) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
- cnnInputSize(int[]) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
- CNNProcessorTest - Class in org.deeplearning4j.nn.conf.preprocessor
-
- CNNProcessorTest() - Constructor for class org.deeplearning4j.nn.conf.preprocessor.CNNProcessorTest
-
- CnnSentenceDataSetIterator - Class in org.deeplearning4j.iterator
-
A DataSetIterator that provides data for training a CNN sentence classification models (though can of course
be used for general documents, not just sentences.
- CnnSentenceDataSetIterator.Builder - Class in org.deeplearning4j.iterator
-
- CnnSentenceDataSetIterator.UnknownWordHandling - Enum in org.deeplearning4j.iterator
-
- CnnToFeedForwardPreProcessor - Class in org.deeplearning4j.nn.conf.preprocessor
-
A preprocessor to allow CNN and standard feed-forward network layers to be used together.
For example, CNN -> Denselayer
This does two things:
(b) Reshapes 4d activations out of CNN layer, with shape
[numExamples, numChannels, inputHeight, inputWidth]) into 2d activations (with shape
[numExamples, inputHeight*inputWidth*numChannels]) for use in feed forward layer
(a) Reshapes epsilons (weights*deltas) out of FeedFoward layer (which is 2D or 3D with shape
[numExamples, inputHeight*inputWidth*numChannels]) into 4d epsilons (with shape
[numExamples, numChannels, inputHeight, inputWidth]) suitable to feed into CNN layers.
Note: numChannels is equivalent to depth or featureMaps referenced in different literature
- CnnToFeedForwardPreProcessor(int, int, int) - Constructor for class org.deeplearning4j.nn.conf.preprocessor.CnnToFeedForwardPreProcessor
-
- CnnToFeedForwardPreProcessor(int, int) - Constructor for class org.deeplearning4j.nn.conf.preprocessor.CnnToFeedForwardPreProcessor
-
- CnnToFeedForwardPreProcessor() - Constructor for class org.deeplearning4j.nn.conf.preprocessor.CnnToFeedForwardPreProcessor
-
- CnnToRnnPreProcessor - Class in org.deeplearning4j.nn.conf.preprocessor
-
A preprocessor to allow CNN and RNN layers to be used together.
For example, ConvolutionLayer -> GravesLSTM
Functionally equivalent to combining CnnToFeedForwardPreProcessor + FeedForwardToRnnPreProcessor
Specifically, this does two things:
(a) Reshape 4d activations out of CNN layer, with shape [timeSeriesLength*miniBatchSize, numChannels, inputHeight, inputWidth])
into 3d (time series) activations (with shape [numExamples, inputHeight*inputWidth*numChannels, timeSeriesLength])
for use in RNN layers
(b) Reshapes 3d epsilons (weights.*deltas) out of RNN layer (with shape
[miniBatchSize,inputHeight*inputWidth*numChannels,timeSeriesLength]) into 4d epsilons with shape
[miniBatchSize*timeSeriesLength, numChannels, inputHeight, inputWidth] suitable to feed into CNN layers.
- CnnToRnnPreProcessor(int, int, int) - Constructor for class org.deeplearning4j.nn.conf.preprocessor.CnnToRnnPreProcessor
-
- cntGet - Variable in class org.deeplearning4j.parallelism.MagicQueue
-
- cntPut - Variable in class org.deeplearning4j.parallelism.MagicQueue
-
- codec - Variable in class org.deeplearning4j.spark.models.sequencevectors.export.impl.HdfsModelExporter
-
- codeLength - Variable in class org.deeplearning4j.models.sequencevectors.sequence.SequenceElement
-
- codes - Variable in class org.deeplearning4j.models.embeddings.inmemory.InMemoryLookupTable
-
- codes - Variable in class org.deeplearning4j.models.sequencevectors.sequence.SequenceElement
-
- collapseDimensions(boolean) - Method in class org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer.Builder
-
Whether to collapse dimensions when pooling or not.
- CollapseUnaries - Class in org.deeplearning4j.text.corpora.treeparser
-
Collapse unaries such that the
tree is only made of preterminals and leaves.
- CollapseUnaries() - Constructor for class org.deeplearning4j.text.corpora.treeparser.CollapseUnaries
-
- collectGarbageCollectionStats() - Method in interface org.deeplearning4j.ui.stats.api.StatsUpdateConfiguration
-
Should garbage collection stats be collected and reported?
- collectGarbageCollectionStats(boolean) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration.Builder
-
- collectGarbageCollectionStats() - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration
-
- collectHardwareInfo() - Method in interface org.deeplearning4j.ui.stats.api.StatsInitializationConfiguration
-
Should hardware configuration information be collected? JVM available processors, number of devices, total memory for each device
- collectHardwareInfo() - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsInitializationConfiguration
-
- collectHistograms(StatsType) - Method in interface org.deeplearning4j.ui.stats.api.StatsUpdateConfiguration
-
Should histograms (per parameter type, or per layer for activations) of the given type be collected?
- collectHistograms(StatsType) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration
-
- collectHistogramsActivations(boolean) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration.Builder
-
- collectHistogramsGradients(boolean) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration.Builder
-
- collectHistogramsParameters(boolean) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration.Builder
-
- collectHistogramsUpdates(boolean) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration.Builder
-
- CollectionLabeledSentenceProvider - Class in org.deeplearning4j.iterator.provider
-
Iterate over a set of sentences/documents,
where the sentences and labels are provided in lists.
- CollectionLabeledSentenceProvider(List<String>, List<String>) - Constructor for class org.deeplearning4j.iterator.provider.CollectionLabeledSentenceProvider
-
- CollectionLabeledSentenceProvider(List<String>, List<String>, Random) - Constructor for class org.deeplearning4j.iterator.provider.CollectionLabeledSentenceProvider
-
- CollectionSentenceIterator - Class in org.deeplearning4j.text.sentenceiterator
-
- CollectionSentenceIterator(SentencePreProcessor, Collection<String>) - Constructor for class org.deeplearning4j.text.sentenceiterator.CollectionSentenceIterator
-
- CollectionSentenceIterator(Collection<String>) - Constructor for class org.deeplearning4j.text.sentenceiterator.CollectionSentenceIterator
-
- CollectionStatsStorageRouter - Class in org.deeplearning4j.api.storage.impl
-
A simple StatsStorageRouter that simply stores the metadata, static info and updates in the specified
collections.
- CollectionStatsStorageRouter() - Constructor for class org.deeplearning4j.api.storage.impl.CollectionStatsStorageRouter
-
- collectLearningRates() - Method in interface org.deeplearning4j.ui.stats.api.StatsUpdateConfiguration
-
Should per-parameter type learning rates be collected and reported?
- collectLearningRates(boolean) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration.Builder
-
- collectLearningRates() - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration
-
- collectMean(StatsType) - Method in interface org.deeplearning4j.ui.stats.api.StatsUpdateConfiguration
-
Should the mean values (per parameter type, or per layer for activations) be collected?
- collectMean(StatsType) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration
-
- collectMeanActivations(boolean) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration.Builder
-
- collectMeanGradients(boolean) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration.Builder
-
- collectMeanMagnitudes(StatsType) - Method in interface org.deeplearning4j.ui.stats.api.StatsUpdateConfiguration
-
Should the mean magnitude values (per parameter type, or per layer for activations) be collected?
- collectMeanMagnitudes(StatsType) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration
-
- collectMeanMagnitudesActivations(boolean) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration.Builder
-
- collectMeanMagnitudesGradients(boolean) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration.Builder
-
- collectMeanMagnitudesParameters(boolean) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration.Builder
-
- collectMeanMagnitudesUpdates(boolean) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration.Builder
-
- collectMeanParameters(boolean) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration.Builder
-
- collectMeanUpdates(boolean) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration.Builder
-
- collectMemoryStats() - Method in interface org.deeplearning4j.ui.stats.api.StatsUpdateConfiguration
-
Should JVM, off-heap and memory stats be collected/reported?
- collectMemoryStats(boolean) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration.Builder
-
- collectMemoryStats() - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration
-
- collectModelInfo() - Method in interface org.deeplearning4j.ui.stats.api.StatsInitializationConfiguration
-
Should model information be collected? Model class, configuration (JSON), number of layers, number of parameters, etc.
- collectModelInfo() - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsInitializationConfiguration
-
- collectPerformanceStats() - Method in interface org.deeplearning4j.ui.stats.api.StatsUpdateConfiguration
-
Should performance stats be collected/reported?
Total time, total examples, total batches, Minibatches/second, examples/second
- collectPerformanceStats(boolean) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration.Builder
-
- collectPerformanceStats() - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration
-
- CollectScoresIterationListener - Class in org.deeplearning4j.optimize.listeners
-
CollectScoresIterationListener simply stores the model scores internally (along with the iteration) every 1 or N
iterations (this is configurable).
- CollectScoresIterationListener() - Constructor for class org.deeplearning4j.optimize.listeners.CollectScoresIterationListener
-
Constructor for collecting scores with default saving frequency of 1
- CollectScoresIterationListener(int) - Constructor for class org.deeplearning4j.optimize.listeners.CollectScoresIterationListener
-
Constructor for collecting scores with the specified frequency.
- collectSoftwareInfo() - Method in interface org.deeplearning4j.ui.stats.api.StatsInitializationConfiguration
-
Should software configuration information be collected? For example, OS, JVM, and ND4J backend details
- collectSoftwareInfo() - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsInitializationConfiguration
-
- collectStdev(StatsType) - Method in interface org.deeplearning4j.ui.stats.api.StatsUpdateConfiguration
-
Should the standard devication values (per parameter type, or per layer for activations) be collected?
- collectStdev(StatsType) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration
-
- collectStdevActivations(boolean) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration.Builder
-
- collectStdevGradients(boolean) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration.Builder
-
- collectStdevParameters(boolean) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration.Builder
-
- collectStdevUpdates(boolean) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration.Builder
-
- collectTrainingStats - Variable in class org.deeplearning4j.spark.api.WorkerConfiguration
-
- color(Color) - Method in class org.deeplearning4j.ui.components.text.style.StyleText.Builder
-
Color for the text
- color(String) - Method in class org.deeplearning4j.ui.components.text.style.StyleText.Builder
-
Color for the text
- colorToHex(Color) - Static method in class org.deeplearning4j.ui.api.Utils
-
Convert an AWT color to a hex color string, such as #000000
- columnWidths(LengthUnit, double...) - Method in class org.deeplearning4j.ui.components.table.style.StyleTable.Builder
-
Specify the widths for the columns
- com.atilika.kuromoji - package com.atilika.kuromoji
-
- com.atilika.kuromoji.buffer - package com.atilika.kuromoji.buffer
-
- com.atilika.kuromoji.compile - package com.atilika.kuromoji.compile
-
- com.atilika.kuromoji.dict - package com.atilika.kuromoji.dict
-
- com.atilika.kuromoji.io - package com.atilika.kuromoji.io
-
- com.atilika.kuromoji.ipadic - package com.atilika.kuromoji.ipadic
-
- com.atilika.kuromoji.ipadic.compile - package com.atilika.kuromoji.ipadic.compile
-
- com.atilika.kuromoji.trie - package com.atilika.kuromoji.trie
-
- com.atilika.kuromoji.util - package com.atilika.kuromoji.util
-
- com.atilika.kuromoji.viterbi - package com.atilika.kuromoji.viterbi
-
- combination(double, double) - Static method in class org.deeplearning4j.util.MathUtils
-
This returns the combination of n choose r
- combineColumns(int, Integer[]) - Method in class org.deeplearning4j.util.StringGrid
-
Combine the column based on a template and a number of template variable
columns.
- combineColumns(int, int[]) - Method in class org.deeplearning4j.util.StringGrid
-
Combine the column based on a template and a number of template variable
columns.
- CombinedPreProcessor - Class in org.deeplearning4j.datasets.iterator
-
This is special preProcessor, that allows to combine multiple prerpocessors, and apply them to data sequentially.
- CombinedPreProcessor.Builder - Class in org.deeplearning4j.datasets.iterator
-
- combinedSequentialFileInputStream(File) - Method in class com.atilika.kuromoji.compile.TokenInfoDictionaryCompilerBase
-
- COMMA - Static variable in class org.deeplearning4j.util.StringUtils
-
- CommonCornerCasesTest - Class in com.atilika.kuromoji
-
- CommonCornerCasesTest() - Constructor for class com.atilika.kuromoji.CommonCornerCasesTest
-
- CommonPreprocessor - Class in org.deeplearning4j.text.tokenization.tokenizer.preprocessor
-
- CommonPreprocessor() - Constructor for class org.deeplearning4j.text.tokenization.tokenizer.preprocessor.CommonPreprocessor
-
- CommonSparkTrainingStats - Class in org.deeplearning4j.spark.api.stats
-
- CommonSparkTrainingStats() - Constructor for class org.deeplearning4j.spark.api.stats.CommonSparkTrainingStats
-
- CommonSparkTrainingStats.Builder - Class in org.deeplearning4j.spark.api.stats
-
- CompactModelAndGradient - Class in org.deeplearning4j.ui.weights.beans
-
Slightly modified version of ModelAndGradient, with binned params/gradients, suitable for fast network transfers for HistogramIterationListener
- CompactModelAndGradient() - Constructor for class org.deeplearning4j.ui.weights.beans.CompactModelAndGradient
-
- compare(Pair<F, S>, Pair<F, S>) - Method in class org.deeplearning4j.berkeley.Pair.DefaultLexicographicPairComparator
-
- compare(Pair<S, T>, Pair<S, T>) - Method in class org.deeplearning4j.berkeley.Pair.FirstComparator
-
- compare(Pair<F, S>, Pair<F, S>) - Method in class org.deeplearning4j.berkeley.Pair.LexicographicPairComparator
-
- compare(Pair<S, T>, Pair<S, T>) - Method in class org.deeplearning4j.berkeley.Pair.ReverseFirstComparator
-
- compare(Pair<S, T>, Pair<S, T>) - Method in class org.deeplearning4j.berkeley.Pair.ReverseSecondComparator
-
- compare(Pair<S, T>, Pair<S, T>) - Method in class org.deeplearning4j.berkeley.Pair.SecondComparator
-
- compare(Double[], Double[]) - Method in class org.deeplearning4j.models.embeddings.reader.impl.BasicModelUtils.ArrayComparator
-
- compare(BasicModelUtils.WordSimilarity, BasicModelUtils.WordSimilarity) - Method in class org.deeplearning4j.models.embeddings.reader.impl.BasicModelUtils.SimilarityComparator
-
- compare(Vertex<V>, Vertex<V>) - Method in class org.deeplearning4j.models.sequencevectors.graph.walkers.impl.NearestVertexWalker.VertexComparator
-
- compare(DataSet, DataSet) - Method in class org.deeplearning4j.spark.ordering.DataSetOrdering
-
- compare(EventStats, EventStats) - Method in class org.deeplearning4j.spark.stats.StatsUtils.StartTimeComparator
-
- compare(Map<String, Integer>, Map<String, Integer>) - Method in class org.deeplearning4j.util.StringCluster.SizeComparator
-
- compareINDArrays(String, INDArray, INDArray, double) - Static method in class org.deeplearning4j.nn.modelimport.keras.KerasModelEndToEndTest
-
- compareMulticlassAUC(String, INDArray, INDArray, INDArray, int, double) - Static method in class org.deeplearning4j.nn.modelimport.keras.KerasModelEndToEndTest
-
- compareTo(Pair<F, S>) - Method in class org.deeplearning4j.berkeley.Pair
-
Compares this object with the specified object for order.
- compareTo(HeapItem) - Method in class org.deeplearning4j.clustering.sptree.HeapItem
-
- compareTo(SequenceElement) - Method in class org.deeplearning4j.models.sequencevectors.sequence.SequenceElement
-
- compareTo(BaseCollectionStatsStorage.SessionTypeId) - Method in class org.deeplearning4j.ui.storage.BaseCollectionStatsStorage.SessionTypeId
-
- compareTo(BaseCollectionStatsStorage.SessionTypeWorkerId) - Method in class org.deeplearning4j.ui.storage.BaseCollectionStatsStorage.SessionTypeWorkerId
-
- compile() - Method in class com.atilika.kuromoji.compile.CharacterDefinitionsCompiler
-
- compile() - Method in interface com.atilika.kuromoji.compile.Compiler
-
- compile() - Method in class com.atilika.kuromoji.compile.ConnectionCostsCompiler
-
- compile() - Method in class com.atilika.kuromoji.compile.TokenInfoBufferCompiler
-
- compile() - Method in class com.atilika.kuromoji.compile.TokenInfoDictionaryCompilerBase
-
- compile() - Method in class com.atilika.kuromoji.compile.UnknownDictionaryCompiler
-
- compile() - Method in class com.atilika.kuromoji.compile.WordIdMapCompiler
-
- Compiler - Interface in com.atilika.kuromoji.compile
-
- complete() - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayerSetupTest
-
- Component - Class in org.deeplearning4j.ui.api
-
A component is anything that can be rendered, such at charts, text or tables.
- Component(String, Style) - Constructor for class org.deeplearning4j.ui.api.Component
-
- COMPONENT_TYPE - Static variable in class org.deeplearning4j.ui.components.chart.ChartHistogram
-
- COMPONENT_TYPE - Static variable in class org.deeplearning4j.ui.components.chart.ChartHorizontalBar
-
- COMPONENT_TYPE - Static variable in class org.deeplearning4j.ui.components.chart.ChartLine
-
- COMPONENT_TYPE - Static variable in class org.deeplearning4j.ui.components.chart.ChartScatter
-
- COMPONENT_TYPE - Static variable in class org.deeplearning4j.ui.components.chart.ChartStackedArea
-
- COMPONENT_TYPE - Static variable in class org.deeplearning4j.ui.components.chart.ChartTimeline
-
- COMPONENT_TYPE - Static variable in class org.deeplearning4j.ui.components.component.ComponentDiv
-
- COMPONENT_TYPE - Static variable in class org.deeplearning4j.ui.components.decorator.DecoratorAccordion
-
- COMPONENT_TYPE - Static variable in class org.deeplearning4j.ui.components.table.ComponentTable
-
- COMPONENT_TYPE - Static variable in class org.deeplearning4j.ui.components.text.ComponentText
-
- ComponentDiv - Class in org.deeplearning4j.ui.components.component
-
Div component (as in, HTML div)
- ComponentDiv() - Constructor for class org.deeplearning4j.ui.components.component.ComponentDiv
-
- ComponentDiv(Style, Component...) - Constructor for class org.deeplearning4j.ui.components.component.ComponentDiv
-
- ComponentDiv(Style, Collection<Component>) - Constructor for class org.deeplearning4j.ui.components.component.ComponentDiv
-
- ComponentObject - Class in org.deeplearning4j.ui.standalone
-
Created by Alex on 25/03/2016.
- ComponentObject() - Constructor for class org.deeplearning4j.ui.standalone.ComponentObject
-
- ComponentTable - Class in org.deeplearning4j.ui.components.table
-
Simple 2d table for text,
- ComponentTable() - Constructor for class org.deeplearning4j.ui.components.table.ComponentTable
-
- ComponentTable(ComponentTable.Builder) - Constructor for class org.deeplearning4j.ui.components.table.ComponentTable
-
- ComponentTable(String[], String[][], StyleTable) - Constructor for class org.deeplearning4j.ui.components.table.ComponentTable
-
- ComponentTable.Builder - Class in org.deeplearning4j.ui.components.table
-
- ComponentText - Class in org.deeplearning4j.ui.components.text
-
Simple text component with styling
- ComponentText() - Constructor for class org.deeplearning4j.ui.components.text.ComponentText
-
- ComponentText(String, StyleText) - Constructor for class org.deeplearning4j.ui.components.text.ComponentText
-
- ComponentText.Builder - Class in org.deeplearning4j.ui.components.text
-
- componentType - Variable in class org.deeplearning4j.ui.api.Component
-
Component type: used by the Arbiter UI to determine how to decode and render the object which is
represented by the JSON representation of this object
- ComposableInputPreProcessor - Class in org.deeplearning4j.nn.conf.preprocessor
-
Composable input pre processor
- ComposableInputPreProcessor(InputPreProcessor...) - Constructor for class org.deeplearning4j.nn.conf.preprocessor.ComposableInputPreProcessor
-
- ComposableIterationListener - Class in org.deeplearning4j.optimize.listeners
-
A group of listeners
- ComposableIterationListener(IterationListener...) - Constructor for class org.deeplearning4j.optimize.listeners.ComposableIterationListener
-
- ComposableIterationListener(Collection<IterationListener>) - Constructor for class org.deeplearning4j.optimize.listeners.ComposableIterationListener
-
- CompositeReconstructionDistribution - Class in org.deeplearning4j.nn.conf.layers.variational
-
CompositeReconstructionDistribution is a reconstruction distribution built from multiple other ReconstructionDistribution
instances.
The typical use is to combine for example continuous and binary data in the same model, or to combine different
distributions for continuous variables.
- CompositeReconstructionDistribution(int[], ReconstructionDistribution[], int) - Constructor for class org.deeplearning4j.nn.conf.layers.variational.CompositeReconstructionDistribution
-
- CompositeReconstructionDistribution.Builder - Class in org.deeplearning4j.nn.conf.layers.variational
-
- ComputationGraph - Class in org.deeplearning4j.nn.graph
-
A ComputationGraph network is a neural network with arbitrary (directed acyclic graph) connection structure.
- ComputationGraph(ComputationGraphConfiguration) - Constructor for class org.deeplearning4j.nn.graph.ComputationGraph
-
- computationGraph - Variable in class org.deeplearning4j.streaming.routes.DL4jServeRouteBuilder
-
- ComputationGraphConfiguration - Class in org.deeplearning4j.nn.conf
-
ComputationGraphConfiguration is a configuration object for neural networks with arbitrary connection structure.
- ComputationGraphConfiguration() - Constructor for class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
- ComputationGraphConfiguration.GraphBuilder - Class in org.deeplearning4j.nn.conf
-
- ComputationGraphConfigurationTest - Class in org.deeplearning4j.nn.conf
-
- ComputationGraphConfigurationTest() - Constructor for class org.deeplearning4j.nn.conf.ComputationGraphConfigurationTest
-
- ComputationGraphConfigurationTest.StaticInnerGraphVertex - Class in org.deeplearning4j.nn.conf
-
- ComputationGraphTestRNN - Class in org.deeplearning4j.nn.graph
-
- ComputationGraphTestRNN() - Constructor for class org.deeplearning4j.nn.graph.ComputationGraphTestRNN
-
- ComputationGraphUpdater - Class in org.deeplearning4j.nn.updater.graph
-
Gradient updater for ComputationGraph.
Note: ComputationGraph does not implement the Layer interface (due to multiple in/out etc), hence ComputationGraphUpdater
can't be defined as an
Updater
.
- ComputationGraphUpdater(ComputationGraph) - Constructor for class org.deeplearning4j.nn.updater.graph.ComputationGraphUpdater
-
- ComputationGraphUpdater(ComputationGraph, INDArray) - Constructor for class org.deeplearning4j.nn.updater.graph.ComputationGraphUpdater
-
- computationGraphUpdater - Variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- ComputationGraphUtil - Class in org.deeplearning4j.nn.graph.util
-
- computeClusterInfos(Cluster, String) - Static method in class org.deeplearning4j.clustering.cluster.ClusterUtils
-
- computeClusterSetInfo(ClusterSet) - Static method in class org.deeplearning4j.clustering.cluster.ClusterUtils
-
- computeClusterSetInfo(ClusterSet, ExecutorService) - Static method in class org.deeplearning4j.clustering.cluster.ClusterUtils
-
- computeEdgeForces(INDArray, INDArray, INDArray, int, INDArray) - Method in class org.deeplearning4j.clustering.quadtree.QuadTree
-
- computeEdgeForces(INDArray, INDArray, INDArray, int, INDArray) - Method in class org.deeplearning4j.clustering.sptree.SpTree
-
Compute edge forces using barns hut
- computeGaussianKernel(INDArray, double, int) - Method in class org.deeplearning4j.plot.BarnesHutTsne
-
Computes a gaussian kernel
given a vector of squared distance distances
- computeGaussianPerplexity(INDArray, double) - Method in class org.deeplearning4j.plot.BarnesHutTsne
-
Convert data to probability
co-occurrences (aka calculating the kernel)
- computeGradientAndScore() - Method in interface org.deeplearning4j.nn.api.Model
-
Update the score
- computeGradientAndScore() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- computeGradientAndScore() - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- computeGradientAndScore() - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- computeGradientAndScore() - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- computeGradientAndScore() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.AutoEncoder
-
- computeGradientAndScore() - Method in class org.deeplearning4j.nn.layers.feedforward.rbm.RBM
-
- computeGradientAndScore() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- computeGradientAndScore() - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- computeGradientAndScore() - Method in class org.deeplearning4j.nn.layers.training.CenterLossOutputLayer
-
- computeGradientAndScore() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- computeGradientAndScore() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- computeGradientAndScore() - Method in class org.deeplearning4j.plot.BarnesHutTsne
-
- computeLossFunctionScoreArray(INDArray, INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.CompositeReconstructionDistribution
-
- computeNonEdgeForces(int, double, INDArray, AtomicDouble) - Method in class org.deeplearning4j.clustering.quadtree.QuadTree
-
Compute non edge forces using barnes hut
- computeNonEdgeForces(int, double, INDArray, AtomicDouble) - Method in class org.deeplearning4j.clustering.sptree.SpTree
-
Compute non edge forces using barnes hut
- computeScore(double, double, boolean) - Method in interface org.deeplearning4j.nn.api.layers.IOutputLayer
-
Compute score after labels and input have been set.
- computeScore(double, double, boolean) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
Compute score after labels and input have been set.
- computeScore(double, double, boolean) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
Compute score after labels and input have been set.
- computeScore(double, double, boolean) - Method in class org.deeplearning4j.nn.layers.training.CenterLossOutputLayer
-
Compute score after labels and input have been set.
- computeScore(VariationalAutoencoder, INDArray) - Method in class org.deeplearning4j.spark.impl.common.score.BaseVaeReconstructionProbWithKeyFunctionAdapter
-
- computeScore(VariationalAutoencoder, INDArray) - Method in class org.deeplearning4j.spark.impl.common.score.BaseVaeScoreWithKeyFunctionAdapter
-
- computeScore(VariationalAutoencoder, INDArray) - Method in class org.deeplearning4j.spark.impl.graph.scoring.CGVaeReconstructionErrorWithKeyFunction
-
- computeScoreForExamples(double, double) - Method in interface org.deeplearning4j.nn.api.layers.IOutputLayer
-
Compute the score for each example individually, after labels and input have been set.
- computeScoreForExamples(double, double) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
Compute the score for each example individually, after labels and input have been set.
- computeScoreForExamples(double, double) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
Compute the score for each example individually, after labels and input have been set.
- computeScoreForExamples(double, double) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer
-
Compute the score for each example individually, after labels and input have been set.
- computeScoreForExamples(double, double) - Method in class org.deeplearning4j.nn.layers.training.CenterLossOutputLayer
-
Compute the score for each example individually, after labels and input have been set.
- computeSquareDistancesFromNearestCluster(ClusterSet, List<Point>, INDArray, ExecutorService) - Static method in class org.deeplearning4j.clustering.cluster.ClusterUtils
-
- computeZ(boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
* Compute input linear transformation (z) of the output layer
- computeZ(INDArray, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Compute activations from input to output of the output layer
- concat(Iterable<Iterator<? extends T>>) - Static method in class org.deeplearning4j.berkeley.Iterators
-
- concat(Iterator<? extends T>...) - Static method in class org.deeplearning4j.berkeley.Iterators
-
- concat(Iterable<T>, Iterable<T>) - Static method in class org.deeplearning4j.berkeley.Iterators
-
- ConcurrentHashSet<E> - Class in org.deeplearning4j.parallelism
-
This is simplified ConcurrentHashSet implementation
PLEASE NOTE: This class does NOT implement real equals & hashCode
- ConcurrentHashSet() - Constructor for class org.deeplearning4j.parallelism.ConcurrentHashSet
-
- ConcurrentHashSet(Collection<E>) - Constructor for class org.deeplearning4j.parallelism.ConcurrentHashSet
-
- concurrentSkipListSet() - Static method in class org.deeplearning4j.util.MultiDimensionalSet
-
- ConcurrentTokenizer - Class in org.deeplearning4j.text.tokenization.tokenizer
-
OpenNLP Tokenizer annotator.
- ConcurrentTokenizer() - Constructor for class org.deeplearning4j.text.tokenization.tokenizer.ConcurrentTokenizer
-
Initializes a new instance.
- conf() - Method in interface org.deeplearning4j.nn.api.Model
-
The configuration for the neural network
- conf - Variable in class org.deeplearning4j.nn.conf.layers.setup.ConvolutionLayerSetup
-
Deprecated.
- conf() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- conf - Variable in class org.deeplearning4j.nn.graph.TestCompGraphCNN
-
- conf - Variable in class org.deeplearning4j.nn.layers.BaseLayer
-
- conf() - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- conf() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- conf - Variable in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- conf() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- conf() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- conf - Variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- conf() - Method in class org.deeplearning4j.plot.BarnesHutTsne
-
- configuration - Variable in class org.deeplearning4j.models.embeddings.learning.impl.elements.SkipGram
-
- configuration - Variable in class org.deeplearning4j.models.embeddings.learning.impl.sequence.DBOW
-
- configuration - Variable in class org.deeplearning4j.models.sequencevectors.SequenceVectors.Builder
-
- configuration - Variable in class org.deeplearning4j.models.sequencevectors.SequenceVectors
-
- configuration - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
-
- configuration - Variable in class org.deeplearning4j.spark.models.embeddings.word2vec.Word2Vec.Builder
-
- configuration - Variable in class org.deeplearning4j.spark.models.embeddings.word2vec.Word2Vec
-
- configuration - Variable in class org.deeplearning4j.spark.models.sequencevectors.SparkSequenceVectors.Builder
-
- configurationBroadcast - Variable in class org.deeplearning4j.spark.models.sequencevectors.functions.BaseTokenizerFunction
-
- configurationBroadcast - Variable in class org.deeplearning4j.spark.models.sequencevectors.functions.DistributedFunction
-
- configurationBroadcast - Variable in class org.deeplearning4j.spark.models.sequencevectors.functions.PartitionTrainingFunction
-
- configurationBroadcast - Variable in class org.deeplearning4j.spark.models.sequencevectors.functions.TrainingFunction
-
- configurationBroadcast - Variable in class org.deeplearning4j.spark.models.sequencevectors.SparkSequenceVectors
-
- configure(TokenizerBase.Builder) - Method in class com.atilika.kuromoji.TokenizerBase
-
- configure(VocabCache<T>, WeightLookupTable<T>, VectorsConfiguration) - Method in interface org.deeplearning4j.models.embeddings.learning.ElementsLearningAlgorithm
-
- configure(VocabCache<T>, WeightLookupTable<T>, VectorsConfiguration) - Method in class org.deeplearning4j.models.embeddings.learning.impl.elements.CBOW
-
- configure(VocabCache<T>, WeightLookupTable<T>, VectorsConfiguration) - Method in class org.deeplearning4j.models.embeddings.learning.impl.elements.GloVe
-
- configure(VocabCache<T>, WeightLookupTable<T>, VectorsConfiguration) - Method in class org.deeplearning4j.models.embeddings.learning.impl.elements.SkipGram
-
SkipGram initialization over given vocabulary and WeightLookupTable
- configure(VocabCache<T>, WeightLookupTable<T>, VectorsConfiguration) - Method in class org.deeplearning4j.models.embeddings.learning.impl.sequence.DBOW
-
- configure(VocabCache<T>, WeightLookupTable<T>, VectorsConfiguration) - Method in class org.deeplearning4j.models.embeddings.learning.impl.sequence.DM
-
- configure(VocabCache<T>, WeightLookupTable<T>, VectorsConfiguration) - Method in interface org.deeplearning4j.models.embeddings.learning.SequenceLearningAlgorithm
-
- configure(NeuralNetConfiguration) - Method in class org.deeplearning4j.optimize.Solver.Builder
-
- configure(VocabCache<ShallowSequenceElement>, WeightLookupTable<ShallowSequenceElement>, VectorsConfiguration) - Method in class org.deeplearning4j.spark.models.sequencevectors.learning.elements.BaseSparkLearningAlgorithm
-
- configure(VocabCache<ShallowSequenceElement>, WeightLookupTable<ShallowSequenceElement>, VectorsConfiguration) - Method in class org.deeplearning4j.spark.models.sequencevectors.learning.sequence.BaseSparkSequenceLearningAlgorithm
-
- configure() - Method in class org.deeplearning4j.streaming.kafka.NDArrayPubSubRoute
-
Called on initialization to build the routes using the fluent builder syntax.
This is a central method for RouteBuilder implementations to implement
the routes using the Java fluent builder syntax.
- configure() - Method in class org.deeplearning4j.streaming.routes.CamelKafkaRouteBuilder
-
Let's configure the Camel routing rules using Java code...
- configure() - Method in class org.deeplearning4j.streaming.routes.DL4jServeRouteBuilder
-
Called on initialization to build the routes using the fluent builder syntax.
This is a central method for RouteBuilder implementations to implement
the routes using the Java fluent builder syntax.
- configured - Variable in class org.deeplearning4j.models.sequencevectors.SequenceVectors
-
- configureListeners(String, Collection<IterationListener>, Collection<IterationListener>) - Method in class org.deeplearning4j.parallelism.trainer.DefaultTrainer
-
- configureMultiLayer() - Method in class org.deeplearning4j.nn.layers.BaseLayerTest
-
- configureSingleLayer() - Method in class org.deeplearning4j.nn.layers.BaseLayerTest
-
- confs - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
- confs(List<NeuralNetConfiguration>) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
- confs - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
- confusion - Variable in class org.deeplearning4j.eval.Evaluation
-
- ConfusionMatrix<T extends java.lang.Comparable<? super T>> - Class in org.deeplearning4j.eval
-
- ConfusionMatrix(List<T>) - Constructor for class org.deeplearning4j.eval.ConfusionMatrix
-
Creates an empty confusion Matrix
- ConfusionMatrix() - Constructor for class org.deeplearning4j.eval.ConfusionMatrix
-
- ConfusionMatrix(ConfusionMatrix<T>) - Constructor for class org.deeplearning4j.eval.ConfusionMatrix
-
Creates a new ConfusionMatrix initialized with the contents of another ConfusionMatrix.
- confusionMatrixMetaData - Variable in class org.deeplearning4j.eval.Evaluation
-
- confusionToString() - Method in class org.deeplearning4j.eval.Evaluation
-
Get a String representation of the confusion matrix
- ConjugateGradient - Class in org.deeplearning4j.optimize.solvers
-
Originally based on cc.mallet.optimize.ConjugateGradient
Rewritten based on Conjugate Gradient algorithm in Bengio et al.,
Deep Learning (in preparation) Ch8.
- ConjugateGradient(NeuralNetConfiguration, StepFunction, Collection<IterationListener>, Model) - Constructor for class org.deeplearning4j.optimize.solvers.ConjugateGradient
-
- ConjugateGradient(NeuralNetConfiguration, StepFunction, Collection<IterationListener>, Collection<TerminationCondition>, Model) - Constructor for class org.deeplearning4j.optimize.solvers.ConjugateGradient
-
- CONJUGATION_FORM - Static variable in class com.atilika.kuromoji.ipadic.compile.DictionaryEntry
-
- CONJUGATION_TYPE - Static variable in class com.atilika.kuromoji.ipadic.compile.DictionaryEntry
-
- connect(List<Tree>) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
Connects the given trees
and sets the parents of the children
- CONNECTION_COSTS_FILENAME - Static variable in class com.atilika.kuromoji.dict.ConnectionCosts
-
- ConnectionCosts - Class in com.atilika.kuromoji.dict
-
- ConnectionCosts(int, ShortBuffer) - Constructor for class com.atilika.kuromoji.dict.ConnectionCosts
-
- connectionCosts - Variable in class com.atilika.kuromoji.TokenizerBase.Builder
-
- ConnectionCostsCompiler - Class in com.atilika.kuromoji.compile
-
- ConnectionCostsCompiler(OutputStream) - Constructor for class com.atilika.kuromoji.compile.ConnectionCostsCompiler
-
- ConnectionCostsCompilerTest - Class in com.atilika.kuromoji.compile
-
- ConnectionCostsCompilerTest() - Constructor for class com.atilika.kuromoji.compile.ConnectionCostsCompilerTest
-
- constructTempDir(String) - Static method in class org.deeplearning4j.streaming.embedded.TestUtils
-
- consume(InMemoryLookupTable<T>) - Method in class org.deeplearning4j.models.embeddings.inmemory.InMemoryLookupTable
-
This method consumes weights of a given InMemoryLookupTable
PLEASE NOTE: this method explicitly resets current weights
- consumeOnce(DataSet, boolean) - Method in class org.deeplearning4j.util.TestDataSetConsumer
-
This method consumes single DataSet, and spends delay time simulating execution of this dataset
- consumeVocabulary(VocabularyHolder) - Method in class org.deeplearning4j.models.word2vec.wordstore.VocabularyHolder
-
- consumeWhileHasNext(boolean) - Method in class org.deeplearning4j.util.TestDataSetConsumer
-
This method cycles through iterator, whie iterator.hasNext() returns true.
- consumingTopic - Variable in class org.deeplearning4j.streaming.routes.DL4jServeRouteBuilder
-
- contains(INDArray) - Method in class org.deeplearning4j.clustering.kdtree.HyperRect
-
- contains(double) - Method in class org.deeplearning4j.clustering.kdtree.HyperRect.Interval
-
- contains(INDArray) - Method in class org.deeplearning4j.clustering.sptree.Cell
-
- contains(Object) - Method in class org.deeplearning4j.parallelism.ConcurrentHashSet
-
- contains(Object) - Method in class org.deeplearning4j.parallelism.MagicQueue
-
This method isn't supported
- contains(Object) - Method in class org.deeplearning4j.util.DiskBasedQueue
-
- contains(K, T) - Method in class org.deeplearning4j.util.MultiDimensionalMap
-
- contains(Object) - Method in class org.deeplearning4j.util.MultiDimensionalSet
-
Returns true if this applyTransformToDestination contains the specified element.
- contains(K, V) - Method in class org.deeplearning4j.util.MultiDimensionalSet
-
- containsAll(Collection<?>) - Method in class org.deeplearning4j.parallelism.ConcurrentHashSet
-
- containsAll(Collection<?>) - Method in class org.deeplearning4j.parallelism.MagicQueue
-
This method isn't supported
- containsAll(Collection<?>) - Method in class org.deeplearning4j.util.DiskBasedQueue
-
- containsAll(Collection<?>) - Method in class org.deeplearning4j.util.MultiDimensionalSet
-
Returns true if this applyTransformToDestination contains all of the elements of the
specified collection.
- containsElement(T) - Method in class org.deeplearning4j.models.word2vec.wordstore.inmemory.AbstractCache
-
Checks, if specified element exists in vocabulary
- containsKey(Object) - Method in class com.atilika.kuromoji.trie.PatriciaTrie
-
Test membership in this trie
- containsKey(E) - Method in class org.deeplearning4j.berkeley.Counter
-
Returns whether the counter contains the given key.
- containsKey(K) - Method in class org.deeplearning4j.berkeley.CounterMap
-
- containsKey(Object) - Method in class org.deeplearning4j.util.MultiDimensionalMap
-
Returns true if this map contains a mapping for the specified
key.
- containsKeyPrefix(String) - Method in class com.atilika.kuromoji.trie.PatriciaTrie
-
Test key prefix membership in this trie (prefix search using key)
- containsPoint(INDArray) - Method in class org.deeplearning4j.clustering.quadtree.Cell
-
Whether the given point is contained
within this cell
- containsValue(Object) - Method in class com.atilika.kuromoji.trie.PatriciaTrie
-
Predicate to test value membership
- containsValue(Object) - Method in class org.deeplearning4j.util.MultiDimensionalMap
-
Returns true if this map maps one or more keys to the
specified value.
- containsWord(String) - Method in class org.deeplearning4j.models.word2vec.wordstore.inmemory.AbstractCache
-
Checks, if specified label exists in vocabulary
- containsWord(String) - Method in class org.deeplearning4j.models.word2vec.wordstore.inmemory.InMemoryLookupCache
-
Deprecated.
Returns true if the cache contains the given word
- containsWord(String) - Method in interface org.deeplearning4j.models.word2vec.wordstore.VocabCache
-
Returns true if the cache contains the given word
- containsWord(String) - Method in class org.deeplearning4j.models.word2vec.wordstore.VocabularyHolder
-
Checks vocabulary for the word existance
- content(String[][]) - Method in class org.deeplearning4j.ui.components.table.ComponentTable.Builder
-
Content for the table, as 2d String[]
- content - Variable in class org.deeplearning4j.ui.standalone.ComponentObject
-
- ContextLabelRetriever - Class in org.deeplearning4j.text.movingwindow
-
Context Label Retriever
- ContextLabelTest - Class in org.deeplearning4j.util
-
Basic test case for the context label test
- ContextLabelTest() - Constructor for class org.deeplearning4j.util.ContextLabelTest
-
- contrastiveDivergence() - Method in class org.deeplearning4j.nn.layers.feedforward.rbm.RBM
-
- ConvergenceCondition - Class in org.deeplearning4j.clustering.algorithm.condition
-
- ConvergenceCondition() - Constructor for class org.deeplearning4j.clustering.algorithm.condition.ConvergenceCondition
-
- ConvergenceCondition(Condition, double) - Constructor for class org.deeplearning4j.clustering.algorithm.condition.ConvergenceCondition
-
- convert(Collection<Collection<Writable>>, int) - Method in class org.deeplearning4j.streaming.conversion.dataset.CSVRecordToDataSet
-
- convert(Collection<Collection<Writable>>, int) - Method in interface org.deeplearning4j.streaming.conversion.dataset.RecordToDataSet
-
Converts records in to a dataset
- convert(Collection<Collection<Writable>>) - Method in class org.deeplearning4j.streaming.conversion.ndarray.CSVRecordToINDArray
-
- convert(Collection<Collection<Writable>>) - Method in class org.deeplearning4j.streaming.conversion.ndarray.NDArrayRecordToNDArray
-
- convert(Collection<Collection<Writable>>) - Method in interface org.deeplearning4j.streaming.conversion.ndarray.RecordToNDArray
-
Converts a list of records in to 1 ndarray
- converter - Variable in class org.deeplearning4j.datasets.datavec.RecordReaderDataSetIterator
-
- convertIpToOctets(String) - Static method in class org.deeplearning4j.spark.models.sequencevectors.utils.NetworkOrganizer
-
- ConvexOptimizer - Interface in org.deeplearning4j.optimize.api
-
Convex optimizer.
- Convolution1DLayer - Class in org.deeplearning4j.nn.conf.layers
-
1D (temporal) convolutional layer.
- Convolution1DLayer - Class in org.deeplearning4j.nn.layers.convolution
-
1D (temporal) convolutional layer.
- Convolution1DLayer(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.convolution.Convolution1DLayer
-
- Convolution1DLayer(NeuralNetConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.layers.convolution.Convolution1DLayer
-
- Convolution1DLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- CONVOLUTION_LAYER - Static variable in class org.deeplearning4j.nn.conf.layers.setup.ConvolutionLayerSetup
-
Deprecated.
- convolutional(int, int, int) - Static method in class org.deeplearning4j.nn.conf.inputs.InputType
-
Input type for convolutional (CNN) data, that is 4d with shape [miniBatchSize, depth, height, width].
- convolutionalFlat(int, int, int) - Static method in class org.deeplearning4j.nn.conf.inputs.InputType
-
Input type for convolutional (CNN) data, where the data is in flattened (row vector) format.
- ConvolutionalIterationListener - Class in org.deeplearning4j.ui.weights
-
- ConvolutionalIterationListener(UiConnectionInfo, int) - Constructor for class org.deeplearning4j.ui.weights.ConvolutionalIterationListener
-
- ConvolutionalIterationListener(int) - Constructor for class org.deeplearning4j.ui.weights.ConvolutionalIterationListener
-
- ConvolutionalIterationListener(int, boolean) - Constructor for class org.deeplearning4j.ui.weights.ConvolutionalIterationListener
-
- ConvolutionalIterationListener(StatsStorageRouter, int, boolean) - Constructor for class org.deeplearning4j.ui.weights.ConvolutionalIterationListener
-
- ConvolutionalIterationListener(StatsStorageRouter, int, boolean, String, String) - Constructor for class org.deeplearning4j.ui.weights.ConvolutionalIterationListener
-
- ConvolutionalListenerModule - Class in org.deeplearning4j.ui.module.convolutional
-
Used for plotting results from the ConvolutionalIterationListener
- ConvolutionalListenerModule() - Constructor for class org.deeplearning4j.ui.module.convolutional.ConvolutionalListenerModule
-
- ConvolutionHelper - Interface in org.deeplearning4j.nn.layers.convolution
-
Helper for the convolution layer.
- ConvolutionLayer - Class in org.deeplearning4j.nn.conf.layers
-
- ConvolutionLayer(ConvolutionLayer.BaseConvBuilder<?>) - Constructor for class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
-
ConvolutionLayer
nIn in the input layer is the number of channels
nOut is the number of filters to be used in the net or in other words the depth
The builder specifies the filter/kernel size, the stride and padding
The pooling layer takes the kernel size
- ConvolutionLayer - Class in org.deeplearning4j.nn.layers.convolution
-
Convolution layer
- ConvolutionLayer(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- ConvolutionLayer(NeuralNetConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- ConvolutionLayer.AlgoMode - Enum in org.deeplearning4j.nn.conf.layers
-
- ConvolutionLayer.BaseConvBuilder<T extends ConvolutionLayer.BaseConvBuilder<T>> - Class in org.deeplearning4j.nn.conf.layers
-
- ConvolutionLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- ConvolutionLayerSetup - Class in org.deeplearning4j.nn.conf.layers.setup
-
- ConvolutionLayerSetup(MultiLayerConfiguration.Builder, int, int, int) - Constructor for class org.deeplearning4j.nn.conf.layers.setup.ConvolutionLayerSetup
-
- ConvolutionLayerSetupTest - Class in org.deeplearning4j.nn.layers.convolution
-
- ConvolutionLayerSetupTest() - Constructor for class org.deeplearning4j.nn.layers.convolution.ConvolutionLayerSetupTest
-
- ConvolutionLayerTest - Class in org.deeplearning4j.nn.layers.convolution
-
- ConvolutionLayerTest() - Constructor for class org.deeplearning4j.nn.layers.convolution.ConvolutionLayerTest
-
- ConvolutionListenerPersistable - Class in org.deeplearning4j.ui.weights
-
Created by Alex on 24/10/2016.
- ConvolutionListenerPersistable() - Constructor for class org.deeplearning4j.ui.weights.ConvolutionListenerPersistable
-
- ConvolutionMode - Enum in org.deeplearning4j.nn.conf
-
ConvolutionMode defines how convolution operations should be executed for Convolutional and Subsampling layers,
for a given input size and network configuration (specifically stride/padding/kernel sizes).
Currently, 3 modes are provided:
Strict: Output size for Convolutional and Subsampling layers are calculated as follows, in each dimension:
outputSize = (inputSize - kernelSize + 2*padding) / stride + 1.
- convolutionMode - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
- convolutionMode(ConvolutionMode) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
Set the convolution mode for the Convolution layer.
- convolutionMode(ConvolutionMode) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
Set the convolution mode for the Convolution layer.
- convolutionMode - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
-
- convolutionMode - Variable in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
- convolutionMode(ConvolutionMode) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
Set the convolution mode for the Convolution layer.
- convolutionMode - Variable in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
-
- convolutionMode - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- convolutionMode(ConvolutionMode) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- convolutionMode - Variable in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- convolutionMode - Variable in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- convolutionMode - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- ConvolutionParamInitializer - Class in org.deeplearning4j.nn.params
-
Initialize convolution params.
- ConvolutionParamInitializer() - Constructor for class org.deeplearning4j.nn.params.ConvolutionParamInitializer
-
- ConvolutionUtils - Class in org.deeplearning4j.util
-
Convolutional shape utilities
- CoOccurenceReader<T extends SequenceElement> - Interface in org.deeplearning4j.models.glove.count
-
Created by raver on 24.12.2015.
- CoOccurrenceCalculator - Class in org.deeplearning4j.spark.models.embeddings.glove.cooccurrences
-
Calculate co occurrences based on tokens
- CoOccurrenceCalculator(boolean, Broadcast<VocabCache<VocabWord>>, int) - Constructor for class org.deeplearning4j.spark.models.embeddings.glove.cooccurrences.CoOccurrenceCalculator
-
- CoOccurrenceCounts - Class in org.deeplearning4j.spark.models.embeddings.glove.cooccurrences
-
Co occurrence count reduction
- CoOccurrenceCounts() - Constructor for class org.deeplearning4j.spark.models.embeddings.glove.cooccurrences.CoOccurrenceCounts
-
- coOccurrenceCounts(Broadcast<CounterMap<String, String>>) - Method in class org.deeplearning4j.spark.models.embeddings.glove.GloveParam.Builder
-
- CoOccurrenceWeight<T extends SequenceElement> - Class in org.deeplearning4j.models.glove.count
-
Simple POJO holding pairs of elements and their respective weights, used in GloVe -> CoOccurrence
- CoOccurrenceWeight() - Constructor for class org.deeplearning4j.models.glove.count.CoOccurrenceWeight
-
- CoOccurrenceWriter<T extends SequenceElement> - Interface in org.deeplearning4j.models.glove.count
-
Created by fartovii on 25.12.15.
- Coords - Class in org.deeplearning4j.ui.flow.beans
-
- Coords() - Constructor for class org.deeplearning4j.ui.flow.beans.Coords
-
- Coords(int, int) - Constructor for class org.deeplearning4j.ui.flow.beans.Coords
-
- coordSplit(double[]) - Static method in class org.deeplearning4j.util.MathUtils
-
This returns the coordinate split in a list of coordinates
such that the values for ret[0] are the x values
and ret[1] are the y values
- coordSplit(List<Double>) - Static method in class org.deeplearning4j.util.MathUtils
-
This returns the coordinate split in a list of coordinates
such that the values for ret[0] are the x values
and ret[1] are the y values
- copyWeightsToLayer(Layer) - Method in class org.deeplearning4j.nn.modelimport.keras.KerasLayer
-
Copy Keras layer weights to DL4J Layer.
- corner(int) - Method in class org.deeplearning4j.clustering.sptree.Cell
-
- corner() - Method in class org.deeplearning4j.clustering.sptree.Cell
-
- CORRECT - Static variable in class org.deeplearning4j.models.embeddings.reader.impl.BasicModelUtils
-
- correlation(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
-
Returns the correlation coefficient of two double vectors.
- correlationR2(int) - Method in class org.deeplearning4j.eval.RegressionEvaluation
-
- corruptionLevel(double) - Method in class org.deeplearning4j.nn.conf.layers.AutoEncoder.Builder
-
- corruptionLevel - Variable in class org.deeplearning4j.nn.conf.layers.AutoEncoder
-
- count(V, V) - Method in interface org.deeplearning4j.berkeley.CounterMap.CountFunction
-
- count - Static variable in class org.deeplearning4j.models.sequencevectors.transformers.impl.iterables.ParallelTransformerIterator
-
- count() - Method in class org.deeplearning4j.ui.stats.sbe.StaticInfoDecoder.HwDeviceInfoGroupDecoder
-
- count() - Method in class org.deeplearning4j.ui.stats.sbe.StaticInfoDecoder.ModelParamNamesDecoder
-
- count() - Method in class org.deeplearning4j.ui.stats.sbe.StaticInfoDecoder.SwEnvironmentInfoDecoder
-
- count() - Method in class org.deeplearning4j.ui.stats.sbe.StorageMetaDataDecoder.ExtraMetaDataBytesDecoder
-
- count() - Method in class org.deeplearning4j.ui.stats.sbe.UpdateDecoder.DataSetMetaDataBytesDecoder
-
- count() - Method in class org.deeplearning4j.ui.stats.sbe.UpdateDecoder.DataSetMetaDataBytesDecoder.MetaDataBytesDecoder
-
- count() - Method in class org.deeplearning4j.ui.stats.sbe.UpdateDecoder.GcStatsDecoder
-
- count() - Method in class org.deeplearning4j.ui.stats.sbe.UpdateDecoder.LayerNamesDecoder
-
- count() - Method in class org.deeplearning4j.ui.stats.sbe.UpdateDecoder.MemoryUseDecoder
-
- count() - Method in class org.deeplearning4j.ui.stats.sbe.UpdateDecoder.ParamNamesDecoder
-
- count() - Method in class org.deeplearning4j.ui.stats.sbe.UpdateDecoder.PerformanceDecoder
-
- count() - Method in class org.deeplearning4j.ui.stats.sbe.UpdateDecoder.PerParameterStatsDecoder
-
- count() - Method in class org.deeplearning4j.ui.stats.sbe.UpdateDecoder.PerParameterStatsDecoder.HistogramsDecoder
-
- count() - Method in class org.deeplearning4j.ui.stats.sbe.UpdateDecoder.PerParameterStatsDecoder.HistogramsDecoder.HistogramCountsDecoder
-
- count() - Method in class org.deeplearning4j.ui.stats.sbe.UpdateDecoder.PerParameterStatsDecoder.SummaryStatDecoder
-
- CountCumSum - Class in org.deeplearning4j.spark.text.functions
-
- CountCumSum(JavaRDD<AtomicLong>) - Constructor for class org.deeplearning4j.spark.text.functions.CountCumSum
-
- countDown() - Method in class org.deeplearning4j.models.word2vec.StreamWork
-
- Counter<E> - Class in org.deeplearning4j.berkeley
-
A map from objects to doubles.
- Counter() - Constructor for class org.deeplearning4j.berkeley.Counter
-
- Counter(boolean) - Constructor for class org.deeplearning4j.berkeley.Counter
-
- Counter(MapFactory<E, Double>) - Constructor for class org.deeplearning4j.berkeley.Counter
-
- Counter(Map<? extends E, Double>) - Constructor for class org.deeplearning4j.berkeley.Counter
-
- Counter(Counter<? extends E>) - Constructor for class org.deeplearning4j.berkeley.Counter
-
- Counter(Collection<? extends E>) - Constructor for class org.deeplearning4j.berkeley.Counter
-
- counter - Variable in class org.deeplearning4j.models.sequencevectors.transformers.impl.GraphTransformer
-
- counter - Variable in class org.deeplearning4j.spark.models.sequencevectors.learning.elements.SparkSkipGram
-
- counter - Variable in class org.deeplearning4j.spark.models.sequencevectors.utils.NetworkOrganizer.VirtualNode
-
- CounterMap<K,V> - Class in org.deeplearning4j.berkeley
-
Maintains counts of (key, value) pairs.
- CounterMap(CounterMap<K, V>) - Constructor for class org.deeplearning4j.berkeley.CounterMap
-
- CounterMap() - Constructor for class org.deeplearning4j.berkeley.CounterMap
-
- CounterMap(MapFactory<K, Counter<V>>, MapFactory<V, Double>) - Constructor for class org.deeplearning4j.berkeley.CounterMap
-
- CounterMap(boolean) - Constructor for class org.deeplearning4j.berkeley.CounterMap
-
- CounterMap.CountFunction<V> - Interface in org.deeplearning4j.berkeley
-
- countFinished - Variable in class org.deeplearning4j.models.paragraphvectors.ParagraphVectors
-
- CountFunction<T extends SequenceElement> - Class in org.deeplearning4j.spark.models.sequencevectors.functions
-
This accumulator function does count individual elements, using provided Accumulator
- CountFunction(Broadcast<VectorsConfiguration>, Broadcast<VoidConfiguration>, Accumulator<Counter<Long>>, boolean) - Constructor for class org.deeplearning4j.spark.models.sequencevectors.functions.CountFunction
-
- CountMap<T extends SequenceElement> - Class in org.deeplearning4j.models.glove.count
-
Drop-in replacement for CounterMap
WORK IN PROGRESS, PLEASE DO NOT USE
- CountMap() - Constructor for class org.deeplearning4j.models.glove.count.CountMap
-
- CountPartitionsFunction<T> - Class in org.deeplearning4j.spark.impl.common
-
This is a function use to count the number of elements in each partition.
- CountPartitionsFunction() - Constructor for class org.deeplearning4j.spark.impl.common.CountPartitionsFunction
-
- CountsForThreshold(double) - Constructor for class org.deeplearning4j.eval.ROC.CountsForThreshold
-
- CountsForThreshold(double, int) - Constructor for class org.deeplearning4j.eval.ROCBinary.CountsForThreshold
-
- countSubmitted - Variable in class org.deeplearning4j.models.paragraphvectors.ParagraphVectors
-
- countTokens() - Method in class org.deeplearning4j.text.tokenization.tokenizer.DefaultStreamTokenizer
-
Returns number of tokens
PLEASE NOTE: this method effectively preloads all tokens.
- countTokens() - Method in class org.deeplearning4j.text.tokenization.tokenizer.DefaultTokenizer
-
- countTokens() - Method in class org.deeplearning4j.text.tokenization.tokenizer.JapaneseTokenizer
-
- countTokens() - Method in class org.deeplearning4j.text.tokenization.tokenizer.KoreanTokenizer
-
- countTokens() - Method in class org.deeplearning4j.text.tokenization.tokenizer.NGramTokenizer
-
- countTokens() - Method in class org.deeplearning4j.text.tokenization.tokenizer.PosUimaTokenizer
-
- countTokens() - Method in interface org.deeplearning4j.text.tokenization.tokenizer.Tokenizer
-
The number of tokens in the tokenizer
- countTokens() - Method in class org.deeplearning4j.text.tokenization.tokenizer.UimaTokenizer
-
- create() - Method in class org.deeplearning4j.aws.ec2.Ec2BoxCreator
-
Create the instances
- create() - Method in class org.deeplearning4j.bagofwords.vectorizer.DefaultInputStreamCreator
-
- create(int) - Method in class org.deeplearning4j.graph.vertexfactory.IntegerVertexFactory
-
- create(int) - Method in class org.deeplearning4j.graph.vertexfactory.StringVertexFactory
-
- create(int) - Method in interface org.deeplearning4j.graph.vertexfactory.VertexFactory
-
- create(int) - Method in class org.deeplearning4j.graph.vertexfactory.VoidVertexFactory
-
- create(int) - Method in class org.deeplearning4j.models.sequencevectors.graph.vertex.AbstractVertexFactory
-
- create(int, T) - Method in class org.deeplearning4j.models.sequencevectors.graph.vertex.AbstractVertexFactory
-
- create(int) - Method in interface org.deeplearning4j.models.sequencevectors.graph.vertex.VertexFactory
-
- create(int, T) - Method in interface org.deeplearning4j.models.sequencevectors.graph.vertex.VertexFactory
-
- create() - Method in interface org.deeplearning4j.models.word2vec.InputStreamCreator
-
Create an input stream
- create(int, Model, int, boolean, ParallelWrapper) - Method in class org.deeplearning4j.parallelism.factory.DefaultTrainerContext
-
Create a
Trainer
based on the given parameters
- create(int, Model, int, boolean, ParallelWrapper) - Method in interface org.deeplearning4j.parallelism.factory.TrainerContext
-
Create a
Trainer
based on the given parameters
- create() - Method in interface org.deeplearning4j.parallelism.main.DataSetIteratorProviderFactory
-
Create an DataSetIterator
- create() - Method in class org.deeplearning4j.parallelism.main.MnistDataSetIteratorProviderFactory
-
Create an DataSetIterator
- create() - Method in interface org.deeplearning4j.parallelism.main.MultiDataSetProviderFactory
-
Create an MultiDataSetIterator
- create(int, Model, int, boolean, ParallelWrapper) - Method in class org.deeplearning4j.parallelism.parameterserver.ParameterServerTrainerContext
-
Create a
Trainer
based on the given parameters
- create(String) - Method in class org.deeplearning4j.text.tokenization.tokenizerfactory.DefaultTokenizerFactory
-
- create(InputStream) - Method in class org.deeplearning4j.text.tokenization.tokenizerfactory.DefaultTokenizerFactory
-
- create(String) - Method in class org.deeplearning4j.text.tokenization.tokenizerfactory.JapaneseTokenizerFactory
-
- create(InputStream) - Method in class org.deeplearning4j.text.tokenization.tokenizerfactory.JapaneseTokenizerFactory
-
- create(String) - Method in class org.deeplearning4j.text.tokenization.tokenizerfactory.KoreanTokenizerFactory
-
- create(InputStream) - Method in class org.deeplearning4j.text.tokenization.tokenizerfactory.KoreanTokenizerFactory
-
- create(String) - Method in class org.deeplearning4j.text.tokenization.tokenizerfactory.NGramTokenizerFactory
-
- create(InputStream) - Method in class org.deeplearning4j.text.tokenization.tokenizerfactory.NGramTokenizerFactory
-
- create(String) - Method in class org.deeplearning4j.text.tokenization.tokenizerfactory.PosUimaTokenizerFactory
-
- create(InputStream) - Method in class org.deeplearning4j.text.tokenization.tokenizerfactory.PosUimaTokenizerFactory
-
- create(String) - Method in interface org.deeplearning4j.text.tokenization.tokenizerfactory.TokenizerFactory
-
The tokenizer to createComplex
- create(InputStream) - Method in interface org.deeplearning4j.text.tokenization.tokenizerfactory.TokenizerFactory
-
Create a tokenizer based on an input stream
- create(String) - Method in class org.deeplearning4j.text.tokenization.tokenizerfactory.UimaTokenizerFactory
-
- create(InputStream) - Method in class org.deeplearning4j.text.tokenization.tokenizerfactory.UimaTokenizerFactory
-
- createAppendingOutputStream(File) - Static method in class org.deeplearning4j.util.FileOperations
-
- createBias(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.ConvolutionParamInitializer
-
- createBias(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.DefaultParamInitializer
-
- createBias(int, double, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.DefaultParamInitializer
-
- createCenterLossMatrix(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.CenterLossParamInitializer
-
- createConsumer() - Method in class org.deeplearning4j.streaming.kafka.NDArrayKafkaClient
-
- createData() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfigurationTest
-
- createDistribution(Distribution) - Static method in class org.deeplearning4j.nn.conf.distribution.Distributions
-
- createGradient(INDArray...) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
Create a gradient list based on the passed in parameters.
- createGradient(INDArray, INDArray, INDArray) - Method in class org.deeplearning4j.nn.layers.BasePretrainNetwork
-
- createInputMatrix(int) - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
-
Creates a feature vector
- createOutputMatrix(int) - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
-
- createOutputVector(int) - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
-
Creates an output label matrix
- createPublisher() - Method in class org.deeplearning4j.streaming.kafka.NDArrayKafkaClient
-
- createRouteBuilder() - Method in class org.deeplearning4j.streaming.routes.Dl4jServingRouteTest
-
- createSpot() - Method in class org.deeplearning4j.aws.ec2.Ec2BoxCreator
-
- createStepFunction(StepFunction) - Static method in class org.deeplearning4j.optimize.stepfunctions.StepFunctions
-
- createToken(int, String, ViterbiNode.Type, int, Dictionary) - Method in interface com.atilika.kuromoji.viterbi.TokenFactory
-
- createTokenList(String) - Method in class com.atilika.kuromoji.TokenizerBase
-
Tokenizes the provided text and returns a list of tokens with various feature information
- createTopic(String, int) - Method in class org.deeplearning4j.streaming.embedded.EmbeddedKafkaCluster
-
- createTopics(String...) - Method in class org.deeplearning4j.streaming.embedded.EmbeddedKafkaCluster
-
- createVisibleBias(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.PretrainParamInitializer
-
- createWeightMatrix(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.ConvolutionParamInitializer
-
- createWeightMatrix(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.DefaultParamInitializer
-
- createWeightMatrix(int, int, WeightInit, Distribution, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.DefaultParamInitializer
-
- createWithPath(String) - Static method in class org.deeplearning4j.text.sentenceiterator.labelaware.LabelAwareUimaSentenceIterator
-
Creates a uima sentence iterator with the given path
- createWithPath(String) - Static method in class org.deeplearning4j.text.sentenceiterator.UimaSentenceIterator
-
Creates a uima sentence iterator with the given path
- creds - Variable in class org.deeplearning4j.aws.s3.BaseS3
-
- CSVReader(File) - Constructor for class org.deeplearning4j.models.embeddings.loader.WordVectorSerializer.CSVReader
-
- CSVRecordToDataSet - Class in org.deeplearning4j.streaming.conversion.dataset
-
Assumes csv format and converts a batch of records in to a
size() x record length matrix.
- CSVRecordToDataSet() - Constructor for class org.deeplearning4j.streaming.conversion.dataset.CSVRecordToDataSet
-
- CSVRecordToINDArray - Class in org.deeplearning4j.streaming.conversion.ndarray
-
Assumes csv format and converts a batch of records in to a
size() x record length matrix.
- CSVRecordToINDArray() - Constructor for class org.deeplearning4j.streaming.conversion.ndarray.CSVRecordToINDArray
-
- cudnnAlgoMode - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
- cudnnAlgoMode(ConvolutionLayer.AlgoMode) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
Defaults to "PREFER_FASTEST", but "NO_WORKSPACE" uses less memory.
- cudnnAlgoMode(ConvolutionLayer.AlgoMode) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
Defaults to "PREFER_FASTEST", but "NO_WORKSPACE" uses less memory.
- cudnnAlgoMode - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
-
Defaults to "PREFER_FASTEST", but "NO_WORKSPACE" uses less memory.
- CudnnBatchNormalizationHelper - Class in org.deeplearning4j.nn.layers.normalization
-
cuDNN-based helper for the batch normalization layer.
- CudnnBatchNormalizationHelper() - Constructor for class org.deeplearning4j.nn.layers.normalization.CudnnBatchNormalizationHelper
-
- CudnnConvolutionHelper - Class in org.deeplearning4j.nn.layers.convolution
-
cuDNN-based helper for the convolution layer.
- CudnnConvolutionHelper() - Constructor for class org.deeplearning4j.nn.layers.convolution.CudnnConvolutionHelper
-
- CudnnLocalResponseNormalizationHelper - Class in org.deeplearning4j.nn.layers.normalization
-
cuDNN-based helper for the local response normalization layer.
- CudnnLocalResponseNormalizationHelper() - Constructor for class org.deeplearning4j.nn.layers.normalization.CudnnLocalResponseNormalizationHelper
-
- CudnnSubsamplingHelper - Class in org.deeplearning4j.nn.layers.convolution.subsampling
-
cuDNN-based helper for the subsampling layer.
- CudnnSubsamplingHelper() - Constructor for class org.deeplearning4j.nn.layers.convolution.subsampling.CudnnSubsamplingHelper
-
- cumSumBetweenPartition() - Method in class org.deeplearning4j.spark.text.functions.CountCumSum
-
- cumSumWithinPartition() - Method in class org.deeplearning4j.spark.text.functions.CountCumSum
-
- curr - Variable in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
-
- currBucket() - Method in class org.deeplearning4j.aws.s3.reader.BaseS3DataSetIterator
-
- currentFile - Variable in class org.deeplearning4j.text.sentenceiterator.FileSentenceIterator
-
- currentIterator - Variable in class org.deeplearning4j.models.sequencevectors.transformers.impl.SentenceTransformer
-
- currentIterator - Variable in class org.deeplearning4j.text.documentiterator.SimpleLabelAwareIterator
-
- currentLabel() - Method in interface org.deeplearning4j.text.documentiterator.LabelAwareDocumentIterator
-
Returns the current label
- currentLabel() - Method in class org.deeplearning4j.text.sentenceiterator.labelaware.LabelAwareFileSentenceIterator
-
- currentLabel() - Method in class org.deeplearning4j.text.sentenceiterator.labelaware.LabelAwareListSentenceIterator
-
Returns the current label for nextSentence()
- currentLabel() - Method in interface org.deeplearning4j.text.sentenceiterator.labelaware.LabelAwareSentenceIterator
-
Returns the current label for nextSentence()
- currentLabel() - Method in class org.deeplearning4j.text.sentenceiterator.labelaware.LabelAwareUimaSentenceIterator
-
Returns the current label for nextSentence()
- currentLabels() - Method in class org.deeplearning4j.text.sentenceiterator.labelaware.LabelAwareFileSentenceIterator
-
- currentLabels() - Method in class org.deeplearning4j.text.sentenceiterator.labelaware.LabelAwareListSentenceIterator
-
- currentLabels() - Method in interface org.deeplearning4j.text.sentenceiterator.labelaware.LabelAwareSentenceIterator
-
For multi label problems
- currentLabels() - Method in class org.deeplearning4j.text.sentenceiterator.labelaware.LabelAwareUimaSentenceIterator
-
- currentTimeMillis() - Method in class org.deeplearning4j.spark.time.NTPTimeSource
-
- currentTimeMillis() - Method in class org.deeplearning4j.spark.time.SystemClockTimeSource
-
- currentTimeMillis() - Method in interface org.deeplearning4j.spark.time.TimeSource
-
Get the current time in milliseconds, according to this TimeSource
- currIndex - Variable in class org.deeplearning4j.models.embeddings.inmemory.InMemoryLookupTable.WeightIterator
-
- currLineIterator - Variable in class org.deeplearning4j.text.sentenceiterator.FileSentenceIterator
-
- cursor() - Method in class org.deeplearning4j.datasets.datavec.RecordReaderDataSetIterator
-
- cursor() - Method in class org.deeplearning4j.datasets.datavec.SequenceRecordReaderDataSetIterator
-
- cursor - Variable in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
-
- cursor() - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
-
- cursor() - Method in class org.deeplearning4j.datasets.iterator.AbstractDataSetIterator
-
The current cursor if applicable
- cursor() - Method in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
-
- cursor() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
-
- cursor() - Method in interface org.deeplearning4j.datasets.iterator.DataSetFetcher
-
Deprecated.
Direct access to a number represenative of iterating through a dataset
- cursor() - Method in class org.deeplearning4j.datasets.iterator.ExistingDataSetIterator
-
- cursor() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
-
- cursor() - Method in class org.deeplearning4j.datasets.iterator.IteratorDataSetIterator
-
- cursor() - Method in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
-
The current cursor if applicable
- cursor() - Method in class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
-
The current cursor if applicable
- cursor() - Method in class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
-
- cursor() - Method in class org.deeplearning4j.datasets.test.TestDataSetIterator
-
- cursor() - Method in class org.deeplearning4j.iterator.CnnSentenceDataSetIterator
-
- cursor() - Method in class org.deeplearning4j.keras.HDF5MiniBatchDataSetIterator
-
- cursor() - Method in class org.deeplearning4j.models.word2vec.iterator.Word2VecDataFetcher
-
- cursor() - Method in class org.deeplearning4j.models.word2vec.iterator.Word2VecDataSetIterator
-
- cursor - Variable in class org.deeplearning4j.spark.iterator.BaseDataSetIterator
-
- cursor() - Method in class org.deeplearning4j.spark.iterator.BaseDataSetIterator
-
- CURVES_FILE_NAME - Static variable in class org.deeplearning4j.datasets.fetchers.CurvesDataFetcher
-
- CURVES_URL - Static variable in class org.deeplearning4j.datasets.fetchers.CurvesDataFetcher
-
- CurvesDataFetcher - Class in org.deeplearning4j.datasets.fetchers
-
Curves data fetcher
- CurvesDataFetcher() - Constructor for class org.deeplearning4j.datasets.fetchers.CurvesDataFetcher
-
- CurvesDataSetIterator - Class in org.deeplearning4j.datasets.iterator
-
Curves data applyTransformToDestination iterator
- CurvesDataSetIterator(int, int) - Constructor for class org.deeplearning4j.datasets.iterator.CurvesDataSetIterator
-
- CUSTOM_FUNCTIONALITY - Static variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
System property for custom layers, preprocessors, graph vertices etc.
- CustomActivation - Class in org.deeplearning4j.nn.layers.custom.testclasses
-
Created by Alex on 19/12/2016.
- CustomActivation() - Constructor for class org.deeplearning4j.nn.layers.custom.testclasses.CustomActivation
-
- CustomLayer - Class in org.deeplearning4j.nn.layers.custom.testclasses
-
Created by Alex on 26/08/2016.
- CustomLayer(double) - Constructor for class org.deeplearning4j.nn.layers.custom.testclasses.CustomLayer
-
- CustomLayer - Class in org.deeplearning4j.spark.impl.customlayer.layer
-
Created by Alex on 26/08/2016.
- CustomLayer(double) - Constructor for class org.deeplearning4j.spark.impl.customlayer.layer.CustomLayer
-
- CustomLayerImpl - Class in org.deeplearning4j.nn.layers.custom.testclasses
-
Basically: identical to DenseLayer
Created by Alex on 26/08/2016.
- CustomLayerImpl(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.custom.testclasses.CustomLayerImpl
-
- CustomLayerImpl - Class in org.deeplearning4j.spark.impl.customlayer.layer
-
Basically: identical to DenseLayer
Created by Alex on 26/08/2016.
- CustomLayerImpl(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.spark.impl.customlayer.layer.CustomLayerImpl
-
- CustomOutputLayer - Class in org.deeplearning4j.nn.layers.custom.testclasses
-
A custom output layer for testing.
- CustomOutputLayer(CustomOutputLayer.Builder) - Constructor for class org.deeplearning4j.nn.layers.custom.testclasses.CustomOutputLayer
-
- CustomOutputLayer.Builder - Class in org.deeplearning4j.nn.layers.custom.testclasses
-
- CustomOutputLayerImpl - Class in org.deeplearning4j.nn.layers.custom.testclasses
-
Created by Alex on 28/08/2016.
- CustomOutputLayerImpl(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.custom.testclasses.CustomOutputLayerImpl
-
- CustomPreprocessorTest - Class in org.deeplearning4j.nn.conf.preprocessor
-
Created by Alex on 09/09/2016.
- CustomPreprocessorTest() - Constructor for class org.deeplearning4j.nn.conf.preprocessor.CustomPreprocessorTest
-
- CustomStemmingPreprocessor - Class in org.deeplearning4j.text.tokenization.tokenizer.preprocessor
-
This is StemmingPreprocessor compatible with different StemmingProcessors defined as lucene/tartarus SnowballProgram
Like, but not limited to: RussianStemmer, DutchStemmer, FrenchStemmer etc
PLEASE NOTE: This preprocessor is thread-safe by using synchronized method
- CustomStemmingPreprocessor(SnowballProgram) - Constructor for class org.deeplearning4j.text.tokenization.tokenizer.preprocessor.CustomStemmingPreprocessor
-