Skip navigation links
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

C

cache - Variable in class org.deeplearning4j.bagofwords.vectorizer.Builder
Deprecated.
 
cache(VocabCache) - Method in class org.deeplearning4j.bagofwords.vectorizer.Builder
Deprecated.
 
cache(VocabCache<T>) - Method in class org.deeplearning4j.models.embeddings.inmemory.InMemoryLookupTable.Builder
 
cache(VocabCache<T>) - Method in class org.deeplearning4j.models.glove.GloveWeightLookupTable.Builder
Deprecated.
 
cache - Variable in class org.deeplearning4j.text.sentenceiterator.FileSentenceIterator
 
calcBackpropGradients(boolean, INDArray...) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Do backprop (gradient calculation)
calcBackpropGradients(INDArray, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Calculate gradients and errors.
calcExponentialDecay(double, double, double) - Method in class org.deeplearning4j.nn.updater.TestDecayPolicies
 
calcGradient(Gradient, INDArray) - Method in interface org.deeplearning4j.nn.api.Layer
Deprecated.
As of 0.7.3 - Feb 2017. No longer used.
calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.ActivationLayer
 
calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
 
calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
 
calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.DropoutLayer
 
calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
 
calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.LossLayer
 
calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
 
calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
 
calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
 
calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
 
calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
 
calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
calcInverseDecay(double, double, double, double) - Method in class org.deeplearning4j.nn.updater.TestDecayPolicies
 
calcL1(boolean) - Method in interface org.deeplearning4j.nn.api.Layer
Calculate the l1 regularization term
0.0 if regularization is not used.
calcL1() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Calculate the L1 regularization term for all layers in the entire network.
calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.ActivationLayer
 
calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.BasePretrainNetwork
 
calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
 
calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
 
calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.DropoutLayer
 
calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
 
calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.LossLayer
 
calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
 
calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
 
calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.pooling.GlobalPoolingLayer
 
calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
 
calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
 
calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
 
calcL1(boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
calcL2(boolean) - Method in interface org.deeplearning4j.nn.api.Layer
Calculate the l2 regularization term
0.0 if regularization is not used.
calcL2() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Calculate the L2 regularization term for all layers in the entire network.
calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.ActivationLayer
 
calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.BasePretrainNetwork
 
calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
 
calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
 
calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.DropoutLayer
 
calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
 
calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.LossLayer
 
calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
 
calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
 
calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.pooling.GlobalPoolingLayer
 
calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
 
calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
 
calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
 
calcL2(boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
calcPolyDecay(double, double, double, double) - Method in class org.deeplearning4j.nn.updater.TestDecayPolicies
 
calcSigmoidDecay(double, double, double, double) - Method in class org.deeplearning4j.nn.updater.TestDecayPolicies
 
calcStepDecay(double, double, double, double) - Method in class org.deeplearning4j.nn.updater.TestDecayPolicies
 
calcTorchStepDecay(double, double) - Method in class org.deeplearning4j.nn.updater.TestDecayPolicies
 
calculate(INDArray, int, double) - Method in class org.deeplearning4j.plot.Tsne
 
calculateAUC() - Method in class org.deeplearning4j.eval.ROC
Calculate the AUC - Area Under Curve
Utilizes trapezoidal integration internally
calculateAUC(int) - Method in class org.deeplearning4j.eval.ROCBinary
Calculate the AUC - Area Under Curve
Utilizes trapezoidal integration internally
calculateAUC(int) - Method in class org.deeplearning4j.eval.ROCMultiClass
Calculate the AUC - Area Under Curve
Utilizes trapezoidal integration internally
calculateAverageAUC() - Method in class org.deeplearning4j.eval.ROCMultiClass
Calculate the average (one-vs-all) AUC for all classes
calculateProb(int, int) - Method in class org.deeplearning4j.graph.models.embeddings.InMemoryGraphLookupTable
Calculate the probability of the second vertex given the first vertex i.e., P(v_second | v_first)
calculateScore(MultiLayerNetwork) - Method in class org.deeplearning4j.earlystopping.scorecalc.DataSetLossCalculator
 
calculateScore(ComputationGraph) - Method in class org.deeplearning4j.earlystopping.scorecalc.DataSetLossCalculatorCG
 
calculateScore(T) - Method in interface org.deeplearning4j.earlystopping.scorecalc.ScoreCalculator
Calculate the score for the given MultiLayerNetwork
calculateScore(int, int) - Method in class org.deeplearning4j.graph.models.embeddings.InMemoryGraphLookupTable
Calculate score.
calculateScore(MultiLayerNetwork) - Method in class org.deeplearning4j.spark.earlystopping.SparkDataSetLossCalculator
 
calculateScore(ComputationGraph) - Method in class org.deeplearning4j.spark.earlystopping.SparkLossCalculatorComputationGraph
 
calculateScore(JavaRDD<DataSet>, boolean) - Method in class org.deeplearning4j.spark.impl.graph.SparkComputationGraph
Calculate the score for all examples in the provided JavaRDD<DataSet>, either by summing or averaging over the entire data set.
calculateScore(JavaRDD<DataSet>, boolean, int) - Method in class org.deeplearning4j.spark.impl.graph.SparkComputationGraph
Calculate the score for all examples in the provided JavaRDD<DataSet>, either by summing or averaging over the entire data set.
calculateScore(RDD<DataSet>, boolean) - Method in class org.deeplearning4j.spark.impl.multilayer.SparkDl4jMultiLayer
Overload of SparkDl4jMultiLayer.calculateScore(JavaRDD, boolean) for RDD<DataSet> instead of JavaRDD<DataSet>
calculateScore(JavaRDD<DataSet>, boolean) - Method in class org.deeplearning4j.spark.impl.multilayer.SparkDl4jMultiLayer
Calculate the score for all examples in the provided JavaRDD<DataSet>, either by summing or averaging over the entire data set.
calculateScore(JavaRDD<DataSet>, boolean, int) - Method in class org.deeplearning4j.spark.impl.multilayer.SparkDl4jMultiLayer
Calculate the score for all examples in the provided JavaRDD<DataSet>, either by summing or averaging over the entire data set.
calculateScoreMultiDataSet(JavaRDD<MultiDataSet>, boolean) - Method in class org.deeplearning4j.spark.impl.graph.SparkComputationGraph
Calculate the score for all examples in the provided JavaRDD<MultiDataSet>, either by summing or averaging over the entire data set.
calculateScoreMultiDataSet(JavaRDD<MultiDataSet>, boolean, int) - Method in class org.deeplearning4j.spark.impl.graph.SparkComputationGraph
Calculate the score for all examples in the provided JavaRDD<MultiDataSet>, either by summing or averaging over the entire data set.
call(I) - Method in interface org.deeplearning4j.berkeley.MyMethod
 
call() - Method in class org.deeplearning4j.models.paragraphvectors.ParagraphVectors.BlindInferenceCallable
 
call() - Method in class org.deeplearning4j.models.paragraphvectors.ParagraphVectors.InferenceCallable
 
call(Integer, Iterator<DataSet>) - Method in class org.deeplearning4j.spark.data.BatchAndExportDataSetsFunction
 
call(Integer, Iterator<MultiDataSet>) - Method in class org.deeplearning4j.spark.data.BatchAndExportMultiDataSetsFunction
 
call(Iterator<DataSet>) - Method in class org.deeplearning4j.spark.data.DataSetExportFunction
 
call(Iterator<MultiDataSet>) - Method in class org.deeplearning4j.spark.data.MultiDataSetExportFunction
 
call(String) - Method in class org.deeplearning4j.spark.data.PathToDataSetFunction
 
call(String) - Method in class org.deeplearning4j.spark.data.PathToMultiDataSetFunction
 
call(Tuple2<Text, BytesWritable>) - Method in class org.deeplearning4j.spark.datavec.DataVecByteDataSetFunction
 
call(List<Writable>) - Method in class org.deeplearning4j.spark.datavec.DataVecDataSetFunction
 
call(List<List<Writable>>) - Method in class org.deeplearning4j.spark.datavec.DataVecSequenceDataSetFunction
 
call(Tuple2<List<List<Writable>>, List<List<Writable>>>) - Method in class org.deeplearning4j.spark.datavec.DataVecSequencePairDataSetFunction
 
call(Iterator<String>) - Method in class org.deeplearning4j.spark.datavec.export.StringToDataSetExportFunction
 
call(DataSet) - Method in class org.deeplearning4j.spark.datavec.MiniBatchTests.DataSetAssertionFunction
 
call(String) - Method in class org.deeplearning4j.spark.datavec.RecordReaderFunction
 
call(INDArray, INDArray) - Method in class org.deeplearning4j.spark.impl.common.Add
 
call(Integer, Iterator<T>) - Method in class org.deeplearning4j.spark.impl.common.CountPartitionsFunction
 
call(PortableDataStream) - Method in class org.deeplearning4j.spark.impl.common.LoadSerializedDataSetFunction
 
call(Tuple2<Integer, Double>, Tuple2<Integer, Double>) - Method in class org.deeplearning4j.spark.impl.common.reduce.IntDoubleReduceFunction
 
call(Integer, Iterator<T>) - Method in class org.deeplearning4j.spark.impl.common.repartition.AssignIndexFunction
 
call(Iterator<Tuple2<K, INDArray>>) - Method in class org.deeplearning4j.spark.impl.common.score.BaseVaeScoreWithKeyFunctionAdapter
 
call(Integer, Iterator<T>) - Method in class org.deeplearning4j.spark.impl.common.SplitPartitionsFunction
 
call(Integer, Iterator<Tuple2<T, U>>) - Method in class org.deeplearning4j.spark.impl.common.SplitPartitionsFunction2
 
call(DataSet) - Method in class org.deeplearning4j.spark.impl.graph.dataset.DataSetToMultiDataSetFn
 
call(Tuple2<K, DataSet>) - Method in class org.deeplearning4j.spark.impl.graph.dataset.PairDataSetToMultiDataSetFn
 
call(Tuple2<K, INDArray[]>) - Method in class org.deeplearning4j.spark.impl.graph.scoring.ArrayPairToPair
 
call(Tuple2<K, INDArray>) - Method in class org.deeplearning4j.spark.impl.graph.scoring.PairToArrayPair
 
call(DataSet) - Method in class org.deeplearning4j.spark.impl.layer.DL4jWorker
 
call(T, T) - Method in class org.deeplearning4j.spark.impl.multilayer.evaluation.IEvaluationReduceFunction
 
call(ParameterAveragingAggregationTuple, ParameterAveragingTrainingResult) - Method in class org.deeplearning4j.spark.impl.paramavg.aggregator.ParameterAveragingElementAddFunction
 
call(ParameterAveragingAggregationTuple, ParameterAveragingAggregationTuple) - Method in class org.deeplearning4j.spark.impl.paramavg.aggregator.ParameterAveragingElementCombineFunction
 
call(Pair<List<String>, AtomicLong>) - Method in class org.deeplearning4j.spark.models.embeddings.glove.cooccurrences.CoOccurrenceCalculator
 
call(CounterMap<String, String>, CounterMap<String, String>) - Method in class org.deeplearning4j.spark.models.embeddings.glove.cooccurrences.CoOccurrenceCounts
 
call(Triple<VocabWord, VocabWord, Double>) - Method in class org.deeplearning4j.spark.models.embeddings.glove.GlovePerformer
 
call(Triple<String, String, Double>) - Method in class org.deeplearning4j.spark.models.embeddings.glove.VocabWordPairs
 
call(Iterator<Tuple2<List<VocabWord>, Long>>) - Method in class org.deeplearning4j.spark.models.embeddings.word2vec.FirstIterationFunctionAdapter
 
call(Map.Entry<VocabWord, INDArray>) - Method in class org.deeplearning4j.spark.models.embeddings.word2vec.MapToPairFunction
 
call(Word2VecFuncCall) - Method in class org.deeplearning4j.spark.models.embeddings.word2vec.SentenceBatch
Deprecated.
 
call(Pair<List<VocabWord>, AtomicLong>) - Method in class org.deeplearning4j.spark.models.embeddings.word2vec.Word2VecPerformer
Deprecated.
 
call(Pair<List<VocabWord>, AtomicLong>) - Method in class org.deeplearning4j.spark.models.embeddings.word2vec.Word2VecPerformerVoid
Deprecated.
 
call(Tuple2<List<VocabWord>, Long>) - Method in class org.deeplearning4j.spark.models.embeddings.word2vec.Word2VecSetup
Deprecated.
 
call(LabelledDocument) - Method in class org.deeplearning4j.spark.models.paragraphvectors.functions.DocumentSequenceConvertFunction
 
call(Tuple2<String, String>) - Method in class org.deeplearning4j.spark.models.paragraphvectors.functions.KeySequenceConvertFunction
 
call(Sequence<T>) - Method in class org.deeplearning4j.spark.models.sequencevectors.functions.CountFunction
 
call(T) - Method in class org.deeplearning4j.spark.models.sequencevectors.functions.DistributedFunction
 
call(T) - Method in class org.deeplearning4j.spark.models.sequencevectors.functions.ExportFunction
 
call(Sequence<T>) - Method in class org.deeplearning4j.spark.models.sequencevectors.functions.ExtraCountFunction
 
call(List<T>) - Method in class org.deeplearning4j.spark.models.sequencevectors.functions.ListSequenceConvertFunction
 
call(Iterator<Sequence<T>>) - Method in class org.deeplearning4j.spark.models.sequencevectors.functions.PartitionTrainingFunction
 
call(String) - Method in class org.deeplearning4j.spark.models.sequencevectors.functions.TokenizerFunction
 
call(Sequence<T>) - Method in class org.deeplearning4j.spark.models.sequencevectors.functions.TrainingFunction
 
call(Integer, Iterator<AtomicLong>) - Method in class org.deeplearning4j.spark.text.functions.FoldBetweenPartitionFunction
 
call(Integer, Iterator<AtomicLong>) - Method in class org.deeplearning4j.spark.text.functions.FoldWithinPartitionFunction
 
call(Pair<List<String>, AtomicLong>) - Method in class org.deeplearning4j.spark.text.functions.GetSentenceCountFunction
 
call(Iterator<?>) - Method in class org.deeplearning4j.spark.text.functions.MapPerPartitionVoidFunction
 
call(AtomicLong, AtomicLong) - Method in class org.deeplearning4j.spark.text.functions.ReduceSentenceCount
 
call(String) - Method in class org.deeplearning4j.spark.text.functions.TokenizerFunction
 
call(List<String>) - Method in class org.deeplearning4j.spark.text.functions.UpdateWordFreqAccumulatorFunction
 
call(Pair<List<String>, AtomicLong>) - Method in class org.deeplearning4j.spark.text.functions.WordsListToVocabWordsFunction
 
call(Integer) - Method in class org.deeplearning4j.spark.text.TestFunction
 
call(T) - Method in class org.deeplearning4j.spark.util.BaseDoubleFlatMapFunctionAdaptee
 
call(T) - Method in class org.deeplearning4j.spark.util.BasePairFlatMapFunctionAdaptee
 
call(JavaRDD<DataSet>) - Method in class org.deeplearning4j.streaming.pipeline.spark.PrintDataSet
 
camelContext(CamelContext) - Method in class org.deeplearning4j.streaming.routes.CamelKafkaRouteBuilder.Builder
 
CamelKafkaRouteBuilder - Class in org.deeplearning4j.streaming.routes
A Camel Java DSL Router
CamelKafkaRouteBuilder() - Constructor for class org.deeplearning4j.streaming.routes.CamelKafkaRouteBuilder
 
CamelKafkaRouteBuilder.Builder - Class in org.deeplearning4j.streaming.routes
 
canDoBackward() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
 
canDoBackward() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
Whether the GraphVertex can do backward pass.
canDoBackward() - Method in class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
 
canDoForward() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
 
canDoForward() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
Whether the GraphVertex can do forward pass.
canEqual(Object) - Method in class org.deeplearning4j.streaming.embedded.StringOption
 
capacity - Variable in class org.deeplearning4j.parallelism.MagicQueue
 
capitalize(String) - Static method in class org.deeplearning4j.berkeley.StringUtils
Uppercases the first character of a string.
categoryMap - Variable in class com.atilika.kuromoji.compile.UnknownDictionaryCompiler
 
CBOW<T extends SequenceElement> - Class in org.deeplearning4j.models.embeddings.learning.impl.elements
CBOW implementation for DeepLearning4j
CBOW() - Constructor for class org.deeplearning4j.models.embeddings.learning.impl.elements.CBOW
 
cbow(int, List<T>, int, AtomicLong, double, int) - Method in class org.deeplearning4j.models.embeddings.learning.impl.elements.CBOW
 
Cell - Class in org.deeplearning4j.clustering.quadtree
A cell representing a bounding box forthe quad tree
Cell(double, double, double, double) - Constructor for class org.deeplearning4j.clustering.quadtree.Cell
 
Cell - Class in org.deeplearning4j.clustering.sptree
 
Cell(int) - Constructor for class org.deeplearning4j.clustering.sptree.Cell
 
CENTER_KEY - Static variable in class org.deeplearning4j.nn.params.CenterLossParamInitializer
 
CenterLossOutputLayer - Class in org.deeplearning4j.nn.conf.layers
Center loss is similar to triplet loss except that it enforces intraclass consistency and doesn't require feed forward of multiple examples.
CenterLossOutputLayer(CenterLossOutputLayer.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer
 
CenterLossOutputLayer - Class in org.deeplearning4j.nn.layers.training
Center loss is similar to triplet loss except that it enforces intraclass consistency and doesn't require feed forward of multiple examples.
CenterLossOutputLayer(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.training.CenterLossOutputLayer
 
CenterLossOutputLayer(NeuralNetConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.layers.training.CenterLossOutputLayer
 
CenterLossOutputLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
 
CenterLossOutputLayerTest - Class in org.deeplearning4j.nn.layers
Test CenterLossOutputLayer.
CenterLossOutputLayerTest() - Constructor for class org.deeplearning4j.nn.layers.CenterLossOutputLayerTest
 
CenterLossParamInitializer - Class in org.deeplearning4j.nn.params
Initialize Center Loss params.
CenterLossParamInitializer() - Constructor for class org.deeplearning4j.nn.params.CenterLossParamInitializer
 
CGVaeReconstructionErrorWithKeyFunction<K> - Class in org.deeplearning4j.spark.impl.graph.scoring
Function to calculate the reconstruction error for a variational autoencoder, that is the first layer in a ComputationGraph.
Note that the VAE must be using a loss function, not a ReconstructionDistribution
Also note that scoring is batched for computational efficiency.
CGVaeReconstructionErrorWithKeyFunction(Broadcast<INDArray>, Broadcast<String>, int) - Constructor for class org.deeplearning4j.spark.impl.graph.scoring.CGVaeReconstructionErrorWithKeyFunction
 
CGVaeReconstructionProbWithKeyFunction<K> - Class in org.deeplearning4j.spark.impl.graph.scoring
Function to calculate the reconstruction probability for a variational autoencoder, that is the first layer in a ComputationGraph.
Note that scoring is batched for computational efficiency.
CGVaeReconstructionProbWithKeyFunction(Broadcast<INDArray>, Broadcast<String>, boolean, int, int) - Constructor for class org.deeplearning4j.spark.impl.graph.scoring.CGVaeReconstructionProbWithKeyFunction
 
channels - Static variable in class org.deeplearning4j.datasets.iterator.impl.CifarDataSetIterator
 
CHARACTER_DEFINITIONS_FILENAME - Static variable in class com.atilika.kuromoji.dict.CharacterDefinitions
 
CharacterDefinitions - Class in com.atilika.kuromoji.dict
 
CharacterDefinitions(int[][], int[][], String[]) - Constructor for class com.atilika.kuromoji.dict.CharacterDefinitions
 
characterDefinitions - Variable in class com.atilika.kuromoji.TokenizerBase.Builder
 
CharacterDefinitionsCompiler - Class in com.atilika.kuromoji.compile
 
CharacterDefinitionsCompiler(OutputStream) - Constructor for class com.atilika.kuromoji.compile.CharacterDefinitionsCompiler
 
CharacterDefinitionsCompilerTest - Class in com.atilika.kuromoji.compile
 
CharacterDefinitionsCompilerTest() - Constructor for class com.atilika.kuromoji.compile.CharacterDefinitionsCompilerTest
 
Chart - Class in org.deeplearning4j.ui.components.chart
Abstract class for charts
Chart(String) - Constructor for class org.deeplearning4j.ui.components.chart.Chart
 
Chart(String, Chart.Builder) - Constructor for class org.deeplearning4j.ui.components.chart.Chart
 
Chart.Builder<T extends Chart.Builder<T>> - Class in org.deeplearning4j.ui.components.chart
 
CHART_MAX_POINTS_PROPERTY - Static variable in class org.deeplearning4j.ui.module.train.TrainModule
 
ChartHistogram - Class in org.deeplearning4j.ui.components.chart
Histogram chart, with pre-binned values.
ChartHistogram(ChartHistogram.Builder) - Constructor for class org.deeplearning4j.ui.components.chart.ChartHistogram
 
ChartHistogram() - Constructor for class org.deeplearning4j.ui.components.chart.ChartHistogram
 
ChartHistogram.Builder - Class in org.deeplearning4j.ui.components.chart
 
ChartHorizontalBar - Class in org.deeplearning4j.ui.components.chart
 
ChartHorizontalBar() - Constructor for class org.deeplearning4j.ui.components.chart.ChartHorizontalBar
 
ChartHorizontalBar.Builder - Class in org.deeplearning4j.ui.components.chart
 
ChartLine - Class in org.deeplearning4j.ui.components.chart
Line chart with multiple independent series
ChartLine() - Constructor for class org.deeplearning4j.ui.components.chart.ChartLine
 
ChartLine.Builder - Class in org.deeplearning4j.ui.components.chart
 
ChartScatter - Class in org.deeplearning4j.ui.components.chart
Scatter chart
ChartScatter() - Constructor for class org.deeplearning4j.ui.components.chart.ChartScatter
 
ChartScatter.Builder - Class in org.deeplearning4j.ui.components.chart
 
ChartStackedArea - Class in org.deeplearning4j.ui.components.chart
Stacked area chart (no normalization), with multiple series.
ChartStackedArea() - Constructor for class org.deeplearning4j.ui.components.chart.ChartStackedArea
 
ChartStackedArea(ChartStackedArea.Builder) - Constructor for class org.deeplearning4j.ui.components.chart.ChartStackedArea
 
ChartStackedArea.Builder - Class in org.deeplearning4j.ui.components.chart
 
ChartTimeline - Class in org.deeplearning4j.ui.components.chart
A timeline/swimlane chart with zoom/scroll functionality.
ChartTimeline() - Constructor for class org.deeplearning4j.ui.components.chart.ChartTimeline
 
ChartTimeline.Builder - Class in org.deeplearning4j.ui.components.chart
 
ChartTimeline.TimelineEntry - Class in org.deeplearning4j.ui.components.chart
 
checkForUnsupportedConfigurations(Map<String, Object>, boolean) - Static method in class org.deeplearning4j.nn.modelimport.keras.KerasLayer
Checks whether layer config contains unsupported options.
checkGradients(MultiLayerNetwork, double, double, double, boolean, boolean, INDArray, INDArray) - Static method in class org.deeplearning4j.gradientcheck.GradientCheckUtil
Check backprop gradients for a MultiLayerNetwork.
checkGradients(ComputationGraph, double, double, double, boolean, boolean, INDArray[], INDArray[]) - Static method in class org.deeplearning4j.gradientcheck.GradientCheckUtil
Check backprop gradients for a ComputationGraph
checkGradients() - Method in class org.deeplearning4j.graph.models.deepwalk.DeepWalkGradientCheck
 
checkGradients2() - Method in class org.deeplearning4j.graph.models.deepwalk.DeepWalkGradientCheck
 
checkGradientsPretrainLayer(Layer, double, double, double, boolean, boolean, INDArray, int) - Static method in class org.deeplearning4j.gradientcheck.GradientCheckUtil
Check backprop gradients for a pretrain layer NOTE: gradient checking pretrain layers can be difficult...
checkInitializationFF() - Method in class org.deeplearning4j.nn.layers.custom.TestCustomLayers
 
checkKryoConfiguration(JavaSparkContext, Logger) - Static method in class org.deeplearning4j.spark.util.SparkUtils
Check the spark configuration for incorrect Kryo configuration, logging a warning message if necessary
checkMaskArrayClearance() - Method in class org.deeplearning4j.nn.graph.ComputationGraphTestRNN
 
checkMaskArrayClearance() - Method in class org.deeplearning4j.nn.multilayer.TestMasking
 
checkMeanVarianceEstimate() - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalizationTest
 
checkMeanVarianceEstimateCNN() - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalizationTest
 
checkSerialization() - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalizationTest
 
checkStorageEvents(Persistable) - Method in class org.deeplearning4j.ui.storage.BaseCollectionStatsStorage
 
checkStorageEvents(Persistable) - Method in class org.deeplearning4j.ui.storage.sqlite.J7FileStatsStorage
 
checkTerminalConditions(INDArray, double, double, int) - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
Check termination conditions setup a search state
checkTerminalConditions(INDArray, double, double, int) - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
 
checkTree() - Method in class org.deeplearning4j.models.embeddings.reader.impl.TreeModelUtils
 
children() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
 
chiSquare2by2(int, int, int, int) - Static method in class org.deeplearning4j.berkeley.SloppyMath
Find a 2x2 chi-square value.
choleskyFromMatrix(RealMatrix) - Method in class org.deeplearning4j.util.MathUtils
This will return the cholesky decomposition of the given matrix
CifarDataSetIterator - Class in org.deeplearning4j.datasets.iterator.impl
CifarDataSetIterator is an iterator for Cifar10 dataset explicitly There is a special preProcessor used to normalize the dataset based on Sergey Zagoruyko example https://github.com/szagoruyko/cifar.torch
CifarDataSetIterator(int, int, boolean) - Constructor for class org.deeplearning4j.datasets.iterator.impl.CifarDataSetIterator
Loads images with given batchSize, numExamples, & version returned by the generator.
CifarDataSetIterator(int, int, int[]) - Constructor for class org.deeplearning4j.datasets.iterator.impl.CifarDataSetIterator
Loads images with given batchSize, numExamples, & imgDim returned by the generator.
CifarDataSetIterator(int, int, int[], boolean) - Constructor for class org.deeplearning4j.datasets.iterator.impl.CifarDataSetIterator
Loads images with given batchSize, numExamples, imgDim & version returned by the generator.
CifarDataSetIterator(int, int) - Constructor for class org.deeplearning4j.datasets.iterator.impl.CifarDataSetIterator
Loads images with given batchSize & numExamples returned by the generator.
CifarDataSetIterator(int, int[]) - Constructor for class org.deeplearning4j.datasets.iterator.impl.CifarDataSetIterator
Loads images with given batchSize & imgDim returned by the generator.
CifarDataSetIterator(int, int, int[], boolean, boolean) - Constructor for class org.deeplearning4j.datasets.iterator.impl.CifarDataSetIterator
Loads images with given batchSize, numExamples, imgDim & version returned by the generator.
CifarDataSetIterator(int, int, int[], int, ImageTransform, boolean, boolean) - Constructor for class org.deeplearning4j.datasets.iterator.impl.CifarDataSetIterator
Create Cifar data specific iterator
clamp(int, int, int) - Static method in class org.deeplearning4j.util.MathUtils
Clamps the value to a discrete value
classCount(Integer) - Method in class org.deeplearning4j.eval.Evaluation
Returns the number of times the given label has actually occurred
classForScore(Double) - Method in class org.deeplearning4j.text.corpora.sentiwordnet.SWN3
 
Classifier - Interface in org.deeplearning4j.nn.api
A classifier (this is for supervised learning)
classify(String) - Method in class org.deeplearning4j.text.corpora.sentiwordnet.SWN3
Classifies the given text
classify(CAS) - Method in class org.deeplearning4j.text.corpora.sentiwordnet.SWN3
 
classify(Sentence) - Method in class org.deeplearning4j.text.corpora.sentiwordnet.SWN3
 
classifyPoint(Point) - Method in class org.deeplearning4j.clustering.cluster.ClusterSet
 
classifyPoint(Point, boolean) - Method in class org.deeplearning4j.clustering.cluster.ClusterSet
 
classifyPoint(ClusterSet, Point) - Static method in class org.deeplearning4j.clustering.cluster.ClusterUtils
 
classifyPoints() - Method in class org.deeplearning4j.clustering.algorithm.BaseClusteringAlgorithm
 
classifyPoints(List<Point>) - Method in class org.deeplearning4j.clustering.cluster.ClusterSet
 
classifyPoints(List<Point>, boolean) - Method in class org.deeplearning4j.clustering.cluster.ClusterSet
 
classifyPoints(ClusterSet, List<Point>, ExecutorService) - Static method in class org.deeplearning4j.clustering.cluster.ClusterUtils
Classify the set of points base on cluster centers.
className - Variable in class org.deeplearning4j.nn.modelimport.keras.KerasLayer
 
className - Variable in class org.deeplearning4j.nn.modelimport.keras.KerasModel
 
ClassPathResource - Class in org.deeplearning4j.ui.standalone
Simple utility class used to get access to files at the classpath, or packed into jar.
ClassPathResource(String) - Constructor for class org.deeplearning4j.ui.standalone.ClassPathResource
Builds new ClassPathResource object
cleanup - Variable in class org.deeplearning4j.bagofwords.vectorizer.Builder
Deprecated.
 
cleanup(boolean) - Method in class org.deeplearning4j.bagofwords.vectorizer.Builder
Deprecated.
 
cleanup() - Method in interface org.deeplearning4j.text.invertedindex.InvertedIndex
Cleanup any resources used
clear() - Method in class com.atilika.kuromoji.trie.PatriciaTrie
Clears this trie by removing all its key-value pairs
clear() - Method in class org.deeplearning4j.berkeley.Counter
 
clear() - Method in interface org.deeplearning4j.nn.api.Model
Clear input
clear() - Method in class org.deeplearning4j.nn.gradient.DefaultGradient
 
clear() - Method in interface org.deeplearning4j.nn.gradient.Gradient
Clear residual parameters (useful for returning a gradient and then clearing old objects)
clear() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
 
clear() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
 
clear() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
Clear the internal state (if any) of the GraphVertex.
clear() - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
clear() - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
 
clear() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
 
clear() - Method in class org.deeplearning4j.nn.layers.LossLayer
 
clear() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
 
clear() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Clear the inputs.
clear() - Method in class org.deeplearning4j.parallelism.ConcurrentHashSet
 
clear() - Method in class org.deeplearning4j.parallelism.MagicQueue
 
clear() - Method in class org.deeplearning4j.plot.BarnesHutTsne
 
clear() - Method in class org.deeplearning4j.ui.stats.sbe.InitFieldsPresentEncoder
 
clear() - Method in class org.deeplearning4j.ui.stats.sbe.UpdateFieldsPresentEncoder
 
clear() - Method in class org.deeplearning4j.util.DiskBasedQueue
 
clear() - Method in class org.deeplearning4j.util.MultiDimensionalMap
Removes all of the mappings from this map (optional operation).
clear() - Method in class org.deeplearning4j.util.MultiDimensionalSet
Removes all of the elements from this applyTransformToDestination (optional operation).
clearLayerMaskArrays() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
Remove the mask arrays from all layers.
See ComputationGraph.setLayerMaskArrays(INDArray[], INDArray[]) for details on mask arrays.
clearLayerMaskArrays() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Remove the mask arrays from all layers.
See MultiLayerNetwork.setLayerMaskArrays(INDArray, INDArray) for details on mask arrays.
clearVariables() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
 
clone() - Method in interface org.deeplearning4j.api.storage.listener.RoutingIterationListener
 
clone() - Method in class org.deeplearning4j.berkeley.PriorityQueue
Returns a clone of this priority queue.
clone() - Method in class org.deeplearning4j.eval.ROC.CountsForThreshold
 
clone() - Method in class org.deeplearning4j.eval.ROCBinary.CountsForThreshold
 
clone() - Method in interface org.deeplearning4j.nn.api.Layer
Clone the layer
clone() - Method in interface org.deeplearning4j.nn.api.Updater
 
clone() - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
 
clone() - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfigurationTest.StaticInnerGraphVertex
 
clone() - Method in class org.deeplearning4j.nn.conf.distribution.Distribution
 
clone() - Method in class org.deeplearning4j.nn.conf.graph.ElementWiseVertex
 
clone() - Method in class org.deeplearning4j.nn.conf.graph.GraphVertex
 
clone() - Method in class org.deeplearning4j.nn.conf.graph.L2NormalizeVertex
 
clone() - Method in class org.deeplearning4j.nn.conf.graph.L2Vertex
 
clone() - Method in class org.deeplearning4j.nn.conf.graph.LayerVertex
 
clone() - Method in class org.deeplearning4j.nn.conf.graph.MergeVertex
 
clone() - Method in class org.deeplearning4j.nn.conf.graph.PreprocessorVertex
 
clone() - Method in class org.deeplearning4j.nn.conf.graph.rnn.DuplicateToTimeSeriesVertex
 
clone() - Method in class org.deeplearning4j.nn.conf.graph.rnn.LastTimeStepVertex
 
clone() - Method in class org.deeplearning4j.nn.conf.graph.ScaleVertex
 
clone() - Method in class org.deeplearning4j.nn.conf.graph.StackVertex
 
clone() - Method in class org.deeplearning4j.nn.conf.graph.SubsetVertex
 
clone() - Method in class org.deeplearning4j.nn.conf.graph.UnstackVertex
 
clone() - Method in interface org.deeplearning4j.nn.conf.InputPreProcessor
 
clone() - Method in class org.deeplearning4j.nn.conf.layers.ActivationLayer
 
clone() - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization
 
clone() - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
 
clone() - Method in class org.deeplearning4j.nn.conf.layers.DropoutLayer
 
clone() - Method in class org.deeplearning4j.nn.conf.layers.Layer
 
clone() - Method in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization
 
clone() - Method in class org.deeplearning4j.nn.conf.layers.Subsampling1DLayer
 
clone() - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
 
clone() - Method in class org.deeplearning4j.nn.conf.misc.TestGraphVertex
 
clone() - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
 
clone() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
clone() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
Creates and returns a deep copy of the configuration.
clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.BaseInputPreProcessor
 
clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.CnnToFeedForwardPreProcessor
 
clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.CnnToRnnPreProcessor
 
clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.ComposableInputPreProcessor
 
clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.custom.MyCustomPreprocessor
 
clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToCnnPreProcessor
 
clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToRnnPreProcessor
 
clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.RnnToCnnPreProcessor
 
clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.RnnToFeedForwardPreProcessor
 
clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.UnitVarianceProcessor
 
clone() - Method in class org.deeplearning4j.nn.conf.stepfunctions.StepFunction
 
clone() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
 
clone() - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
clone() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
 
clone() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
 
clone() - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
 
clone() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
 
clone() - Method in class org.deeplearning4j.nn.modelimport.keras.preprocessors.TensorFlowCnnToFeedForwardPreProcessor
 
clone() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
clone() - Method in class org.deeplearning4j.nn.updater.graph.ComputationGraphUpdater
 
clone() - Method in class org.deeplearning4j.nn.updater.LayerUpdater
 
clone() - Method in class org.deeplearning4j.nn.updater.MultiLayerUpdater
 
clone() - Method in class org.deeplearning4j.ui.stats.BaseStatsListener
 
clone() - Method in class org.deeplearning4j.ui.stats.J7StatsListener
 
clone() - Method in class org.deeplearning4j.ui.stats.StatsListener
 
cloneCompGraphFrozen() - Method in class org.deeplearning4j.nn.layers.FrozenLayerTest
 
cloneListener(IterationListener) - Static method in class org.deeplearning4j.parallelism.trainer.DefaultTrainer
 
cloneMLNFrozen() - Method in class org.deeplearning4j.nn.layers.FrozenLayerTest
 
close() - Method in interface org.deeplearning4j.api.storage.StatsStorage
Close any open resources (files, etc)
close() - Method in class org.deeplearning4j.datasets.mnist.draw.DrawReconstruction
 
close() - Method in class org.deeplearning4j.datasets.mnist.MnistManager
Close any resources opened by the manager.
close() - Method in class org.deeplearning4j.models.embeddings.loader.WordVectorSerializer.BinaryReader
 
close() - Method in class org.deeplearning4j.models.embeddings.loader.WordVectorSerializer.CSVReader
 
close() - Method in class org.deeplearning4j.parallelism.ParallelWrapper
 
close() - Method in class org.deeplearning4j.ui.storage.InMemoryStatsStorage
 
close() - Method in class org.deeplearning4j.ui.storage.mapdb.MapDBStatsStorage
 
close() - Method in class org.deeplearning4j.ui.storage.sqlite.J7FileStatsStorage
 
Cluster - Class in org.deeplearning4j.clustering.cluster
 
Cluster() - Constructor for class org.deeplearning4j.clustering.cluster.Cluster
 
Cluster(Point, String) - Constructor for class org.deeplearning4j.clustering.cluster.Cluster
 
clusterColumn(int) - Method in class org.deeplearning4j.util.StringGrid
 
ClusterInfo - Class in org.deeplearning4j.clustering.cluster.info
 
ClusterInfo() - Constructor for class org.deeplearning4j.clustering.cluster.info.ClusterInfo
 
ClusterInfo(boolean) - Constructor for class org.deeplearning4j.clustering.cluster.info.ClusterInfo
 
ClusteringAlgorithm - Interface in org.deeplearning4j.clustering.algorithm
 
ClusteringAlgorithmCondition - Interface in org.deeplearning4j.clustering.algorithm.condition
 
ClusteringOptimization - Class in org.deeplearning4j.clustering.algorithm.optimisation
 
ClusteringOptimization() - Constructor for class org.deeplearning4j.clustering.algorithm.optimisation.ClusteringOptimization
 
ClusteringOptimization(ClusteringOptimizationType, double) - Constructor for class org.deeplearning4j.clustering.algorithm.optimisation.ClusteringOptimization
 
ClusteringOptimizationType - Enum in org.deeplearning4j.clustering.algorithm.optimisation
 
ClusteringStrategy - Interface in org.deeplearning4j.clustering.algorithm.strategy
 
ClusteringStrategyType - Enum in org.deeplearning4j.clustering.algorithm.strategy
 
ClusterSet - Class in org.deeplearning4j.clustering.cluster
 
ClusterSet() - Constructor for class org.deeplearning4j.clustering.cluster.ClusterSet
 
ClusterSet(String) - Constructor for class org.deeplearning4j.clustering.cluster.ClusterSet
 
ClusterSetInfo - Class in org.deeplearning4j.clustering.cluster.info
 
ClusterSetInfo() - Constructor for class org.deeplearning4j.clustering.cluster.info.ClusterSetInfo
 
ClusterSetInfo(boolean) - Constructor for class org.deeplearning4j.clustering.cluster.info.ClusterSetInfo
 
ClusterSetup - Class in org.deeplearning4j.aws.ec2.provision
Sets up a DL4J cluster
ClusterSetup(String[]) - Constructor for class org.deeplearning4j.aws.ec2.provision.ClusterSetup
 
ClusterUtils - Class in org.deeplearning4j.clustering.cluster
Basic cluster utilities
CNN1DGradientCheckTest - Class in org.deeplearning4j.gradientcheck
 
CNN1DGradientCheckTest() - Constructor for class org.deeplearning4j.gradientcheck.CNN1DGradientCheckTest
 
cnnEpsilon - Variable in class org.deeplearning4j.nn.layers.normalization.BatchNormalizationTest
 
CNNGradientCheckTest - Class in org.deeplearning4j.gradientcheck
Created by nyghtowl on 9/1/15.
CNNGradientCheckTest() - Constructor for class org.deeplearning4j.gradientcheck.CNNGradientCheckTest
 
cnnInput - Variable in class org.deeplearning4j.nn.layers.normalization.BatchNormalizationTest
 
cnnInputSize - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
Deprecated.
cnnInputSize(int, int, int) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
Deprecated.
use MultiLayerConfiguration.Builder.setInputType(InputType) with InputType.convolutional(height,width,depth), for CNN data with shape [minibatchSize,depth,height,width]. For image data that has been flattened into a row vector per example (shape [minibatchSize,depth*height*width]) instead use InputType.convolutionalFlat(height,width,depth)
cnnInputSize(int[]) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
Deprecated.
use MultiLayerConfiguration.Builder.setInputType(InputType) with InputType.convolutional(height,width,depth), for CNN data with shape [minibatchSize,depth,height,width]. For image data that has been flattened into a row vector per example (shape [minibatchSize,depth*height*width]) instead use InputType.convolutionalFlat(height,width,depth)
CNNProcessorTest - Class in org.deeplearning4j.nn.conf.preprocessor
 
CNNProcessorTest() - Constructor for class org.deeplearning4j.nn.conf.preprocessor.CNNProcessorTest
 
CnnSentenceDataSetIterator - Class in org.deeplearning4j.iterator
A DataSetIterator that provides data for training a CNN sentence classification models (though can of course be used for general documents, not just sentences.
CnnSentenceDataSetIterator.Builder - Class in org.deeplearning4j.iterator
 
CnnSentenceDataSetIterator.UnknownWordHandling - Enum in org.deeplearning4j.iterator
 
CnnToFeedForwardPreProcessor - Class in org.deeplearning4j.nn.conf.preprocessor
A preprocessor to allow CNN and standard feed-forward network layers to be used together.
For example, CNN -> Denselayer
This does two things:
(b) Reshapes 4d activations out of CNN layer, with shape [numExamples, numChannels, inputHeight, inputWidth]) into 2d activations (with shape [numExamples, inputHeight*inputWidth*numChannels]) for use in feed forward layer (a) Reshapes epsilons (weights*deltas) out of FeedFoward layer (which is 2D or 3D with shape [numExamples, inputHeight*inputWidth*numChannels]) into 4d epsilons (with shape [numExamples, numChannels, inputHeight, inputWidth]) suitable to feed into CNN layers.
Note: numChannels is equivalent to depth or featureMaps referenced in different literature
CnnToFeedForwardPreProcessor(int, int, int) - Constructor for class org.deeplearning4j.nn.conf.preprocessor.CnnToFeedForwardPreProcessor
 
CnnToFeedForwardPreProcessor(int, int) - Constructor for class org.deeplearning4j.nn.conf.preprocessor.CnnToFeedForwardPreProcessor
 
CnnToFeedForwardPreProcessor() - Constructor for class org.deeplearning4j.nn.conf.preprocessor.CnnToFeedForwardPreProcessor
 
CnnToRnnPreProcessor - Class in org.deeplearning4j.nn.conf.preprocessor
A preprocessor to allow CNN and RNN layers to be used together.
For example, ConvolutionLayer -> GravesLSTM Functionally equivalent to combining CnnToFeedForwardPreProcessor + FeedForwardToRnnPreProcessor
Specifically, this does two things:
(a) Reshape 4d activations out of CNN layer, with shape [timeSeriesLength*miniBatchSize, numChannels, inputHeight, inputWidth]) into 3d (time series) activations (with shape [numExamples, inputHeight*inputWidth*numChannels, timeSeriesLength]) for use in RNN layers
(b) Reshapes 3d epsilons (weights.*deltas) out of RNN layer (with shape [miniBatchSize,inputHeight*inputWidth*numChannels,timeSeriesLength]) into 4d epsilons with shape [miniBatchSize*timeSeriesLength, numChannels, inputHeight, inputWidth] suitable to feed into CNN layers.
CnnToRnnPreProcessor(int, int, int) - Constructor for class org.deeplearning4j.nn.conf.preprocessor.CnnToRnnPreProcessor
 
cntGet - Variable in class org.deeplearning4j.parallelism.MagicQueue
 
cntPut - Variable in class org.deeplearning4j.parallelism.MagicQueue
 
codec - Variable in class org.deeplearning4j.spark.models.sequencevectors.export.impl.HdfsModelExporter
 
codeLength - Variable in class org.deeplearning4j.models.sequencevectors.sequence.SequenceElement
 
codes - Variable in class org.deeplearning4j.models.embeddings.inmemory.InMemoryLookupTable
 
codes - Variable in class org.deeplearning4j.models.sequencevectors.sequence.SequenceElement
 
collapseDimensions(boolean) - Method in class org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer.Builder
Whether to collapse dimensions when pooling or not.
CollapseUnaries - Class in org.deeplearning4j.text.corpora.treeparser
Collapse unaries such that the tree is only made of preterminals and leaves.
CollapseUnaries() - Constructor for class org.deeplearning4j.text.corpora.treeparser.CollapseUnaries
 
collectGarbageCollectionStats() - Method in interface org.deeplearning4j.ui.stats.api.StatsUpdateConfiguration
Should garbage collection stats be collected and reported?
collectGarbageCollectionStats(boolean) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration.Builder
 
collectGarbageCollectionStats() - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration
 
collectHardwareInfo() - Method in interface org.deeplearning4j.ui.stats.api.StatsInitializationConfiguration
Should hardware configuration information be collected? JVM available processors, number of devices, total memory for each device
collectHardwareInfo() - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsInitializationConfiguration
 
collectHistograms(StatsType) - Method in interface org.deeplearning4j.ui.stats.api.StatsUpdateConfiguration
Should histograms (per parameter type, or per layer for activations) of the given type be collected?
collectHistograms(StatsType) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration
 
collectHistogramsActivations(boolean) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration.Builder
 
collectHistogramsGradients(boolean) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration.Builder
 
collectHistogramsParameters(boolean) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration.Builder
 
collectHistogramsUpdates(boolean) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration.Builder
 
CollectionLabeledSentenceProvider - Class in org.deeplearning4j.iterator.provider
Iterate over a set of sentences/documents, where the sentences and labels are provided in lists.
CollectionLabeledSentenceProvider(List<String>, List<String>) - Constructor for class org.deeplearning4j.iterator.provider.CollectionLabeledSentenceProvider
 
CollectionLabeledSentenceProvider(List<String>, List<String>, Random) - Constructor for class org.deeplearning4j.iterator.provider.CollectionLabeledSentenceProvider
 
CollectionSentenceIterator - Class in org.deeplearning4j.text.sentenceiterator
 
CollectionSentenceIterator(SentencePreProcessor, Collection<String>) - Constructor for class org.deeplearning4j.text.sentenceiterator.CollectionSentenceIterator
 
CollectionSentenceIterator(Collection<String>) - Constructor for class org.deeplearning4j.text.sentenceiterator.CollectionSentenceIterator
 
CollectionStatsStorageRouter - Class in org.deeplearning4j.api.storage.impl
A simple StatsStorageRouter that simply stores the metadata, static info and updates in the specified collections.
CollectionStatsStorageRouter() - Constructor for class org.deeplearning4j.api.storage.impl.CollectionStatsStorageRouter
 
collectLearningRates() - Method in interface org.deeplearning4j.ui.stats.api.StatsUpdateConfiguration
Should per-parameter type learning rates be collected and reported?
collectLearningRates(boolean) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration.Builder
 
collectLearningRates() - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration
 
collectMean(StatsType) - Method in interface org.deeplearning4j.ui.stats.api.StatsUpdateConfiguration
Should the mean values (per parameter type, or per layer for activations) be collected?
collectMean(StatsType) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration
 
collectMeanActivations(boolean) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration.Builder
 
collectMeanGradients(boolean) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration.Builder
 
collectMeanMagnitudes(StatsType) - Method in interface org.deeplearning4j.ui.stats.api.StatsUpdateConfiguration
Should the mean magnitude values (per parameter type, or per layer for activations) be collected?
collectMeanMagnitudes(StatsType) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration
 
collectMeanMagnitudesActivations(boolean) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration.Builder
 
collectMeanMagnitudesGradients(boolean) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration.Builder
 
collectMeanMagnitudesParameters(boolean) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration.Builder
 
collectMeanMagnitudesUpdates(boolean) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration.Builder
 
collectMeanParameters(boolean) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration.Builder
 
collectMeanUpdates(boolean) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration.Builder
 
collectMemoryStats() - Method in interface org.deeplearning4j.ui.stats.api.StatsUpdateConfiguration
Should JVM, off-heap and memory stats be collected/reported?
collectMemoryStats(boolean) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration.Builder
 
collectMemoryStats() - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration
 
collectModelInfo() - Method in interface org.deeplearning4j.ui.stats.api.StatsInitializationConfiguration
Should model information be collected? Model class, configuration (JSON), number of layers, number of parameters, etc.
collectModelInfo() - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsInitializationConfiguration
 
collectPerformanceStats() - Method in interface org.deeplearning4j.ui.stats.api.StatsUpdateConfiguration
Should performance stats be collected/reported? Total time, total examples, total batches, Minibatches/second, examples/second
collectPerformanceStats(boolean) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration.Builder
 
collectPerformanceStats() - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration
 
CollectScoresIterationListener - Class in org.deeplearning4j.optimize.listeners
CollectScoresIterationListener simply stores the model scores internally (along with the iteration) every 1 or N iterations (this is configurable).
CollectScoresIterationListener() - Constructor for class org.deeplearning4j.optimize.listeners.CollectScoresIterationListener
Constructor for collecting scores with default saving frequency of 1
CollectScoresIterationListener(int) - Constructor for class org.deeplearning4j.optimize.listeners.CollectScoresIterationListener
Constructor for collecting scores with the specified frequency.
collectSoftwareInfo() - Method in interface org.deeplearning4j.ui.stats.api.StatsInitializationConfiguration
Should software configuration information be collected? For example, OS, JVM, and ND4J backend details
collectSoftwareInfo() - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsInitializationConfiguration
 
collectStdev(StatsType) - Method in interface org.deeplearning4j.ui.stats.api.StatsUpdateConfiguration
Should the standard devication values (per parameter type, or per layer for activations) be collected?
collectStdev(StatsType) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration
 
collectStdevActivations(boolean) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration.Builder
 
collectStdevGradients(boolean) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration.Builder
 
collectStdevParameters(boolean) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration.Builder
 
collectStdevUpdates(boolean) - Method in class org.deeplearning4j.ui.stats.impl.DefaultStatsUpdateConfiguration.Builder
 
collectTrainingStats - Variable in class org.deeplearning4j.spark.api.WorkerConfiguration
 
color(Color) - Method in class org.deeplearning4j.ui.components.text.style.StyleText.Builder
Color for the text
color(String) - Method in class org.deeplearning4j.ui.components.text.style.StyleText.Builder
Color for the text
colorToHex(Color) - Static method in class org.deeplearning4j.ui.api.Utils
Convert an AWT color to a hex color string, such as #000000
columnWidths(LengthUnit, double...) - Method in class org.deeplearning4j.ui.components.table.style.StyleTable.Builder
Specify the widths for the columns
com.atilika.kuromoji - package com.atilika.kuromoji
 
com.atilika.kuromoji.buffer - package com.atilika.kuromoji.buffer
 
com.atilika.kuromoji.compile - package com.atilika.kuromoji.compile
 
com.atilika.kuromoji.dict - package com.atilika.kuromoji.dict
 
com.atilika.kuromoji.io - package com.atilika.kuromoji.io
 
com.atilika.kuromoji.ipadic - package com.atilika.kuromoji.ipadic
 
com.atilika.kuromoji.ipadic.compile - package com.atilika.kuromoji.ipadic.compile
 
com.atilika.kuromoji.trie - package com.atilika.kuromoji.trie
 
com.atilika.kuromoji.util - package com.atilika.kuromoji.util
 
com.atilika.kuromoji.viterbi - package com.atilika.kuromoji.viterbi
 
combination(double, double) - Static method in class org.deeplearning4j.util.MathUtils
This returns the combination of n choose r
combineColumns(int, Integer[]) - Method in class org.deeplearning4j.util.StringGrid
Combine the column based on a template and a number of template variable columns.
combineColumns(int, int[]) - Method in class org.deeplearning4j.util.StringGrid
Combine the column based on a template and a number of template variable columns.
CombinedPreProcessor - Class in org.deeplearning4j.datasets.iterator
This is special preProcessor, that allows to combine multiple prerpocessors, and apply them to data sequentially.
CombinedPreProcessor.Builder - Class in org.deeplearning4j.datasets.iterator
 
combinedSequentialFileInputStream(File) - Method in class com.atilika.kuromoji.compile.TokenInfoDictionaryCompilerBase
 
COMMA - Static variable in class org.deeplearning4j.util.StringUtils
 
CommonCornerCasesTest - Class in com.atilika.kuromoji
 
CommonCornerCasesTest() - Constructor for class com.atilika.kuromoji.CommonCornerCasesTest
 
CommonPreprocessor - Class in org.deeplearning4j.text.tokenization.tokenizer.preprocessor
 
CommonPreprocessor() - Constructor for class org.deeplearning4j.text.tokenization.tokenizer.preprocessor.CommonPreprocessor
 
CommonSparkTrainingStats - Class in org.deeplearning4j.spark.api.stats
A SparkTrainingStats implementation for common stats functionality used by most workers
CommonSparkTrainingStats() - Constructor for class org.deeplearning4j.spark.api.stats.CommonSparkTrainingStats
 
CommonSparkTrainingStats.Builder - Class in org.deeplearning4j.spark.api.stats
 
CompactModelAndGradient - Class in org.deeplearning4j.ui.weights.beans
Slightly modified version of ModelAndGradient, with binned params/gradients, suitable for fast network transfers for HistogramIterationListener
CompactModelAndGradient() - Constructor for class org.deeplearning4j.ui.weights.beans.CompactModelAndGradient
 
compare(Pair<F, S>, Pair<F, S>) - Method in class org.deeplearning4j.berkeley.Pair.DefaultLexicographicPairComparator
 
compare(Pair<S, T>, Pair<S, T>) - Method in class org.deeplearning4j.berkeley.Pair.FirstComparator
 
compare(Pair<F, S>, Pair<F, S>) - Method in class org.deeplearning4j.berkeley.Pair.LexicographicPairComparator
 
compare(Pair<S, T>, Pair<S, T>) - Method in class org.deeplearning4j.berkeley.Pair.ReverseFirstComparator
 
compare(Pair<S, T>, Pair<S, T>) - Method in class org.deeplearning4j.berkeley.Pair.ReverseSecondComparator
 
compare(Pair<S, T>, Pair<S, T>) - Method in class org.deeplearning4j.berkeley.Pair.SecondComparator
 
compare(Double[], Double[]) - Method in class org.deeplearning4j.models.embeddings.reader.impl.BasicModelUtils.ArrayComparator
 
compare(BasicModelUtils.WordSimilarity, BasicModelUtils.WordSimilarity) - Method in class org.deeplearning4j.models.embeddings.reader.impl.BasicModelUtils.SimilarityComparator
 
compare(Vertex<V>, Vertex<V>) - Method in class org.deeplearning4j.models.sequencevectors.graph.walkers.impl.NearestVertexWalker.VertexComparator
 
compare(DataSet, DataSet) - Method in class org.deeplearning4j.spark.ordering.DataSetOrdering
 
compare(EventStats, EventStats) - Method in class org.deeplearning4j.spark.stats.StatsUtils.StartTimeComparator
 
compare(Map<String, Integer>, Map<String, Integer>) - Method in class org.deeplearning4j.util.StringCluster.SizeComparator
 
compareINDArrays(String, INDArray, INDArray, double) - Static method in class org.deeplearning4j.nn.modelimport.keras.KerasModelEndToEndTest
 
compareMulticlassAUC(String, INDArray, INDArray, INDArray, int, double) - Static method in class org.deeplearning4j.nn.modelimport.keras.KerasModelEndToEndTest
 
compareTo(Pair<F, S>) - Method in class org.deeplearning4j.berkeley.Pair
Compares this object with the specified object for order.
compareTo(HeapItem) - Method in class org.deeplearning4j.clustering.sptree.HeapItem
 
compareTo(SequenceElement) - Method in class org.deeplearning4j.models.sequencevectors.sequence.SequenceElement
 
compareTo(BaseCollectionStatsStorage.SessionTypeId) - Method in class org.deeplearning4j.ui.storage.BaseCollectionStatsStorage.SessionTypeId
 
compareTo(BaseCollectionStatsStorage.SessionTypeWorkerId) - Method in class org.deeplearning4j.ui.storage.BaseCollectionStatsStorage.SessionTypeWorkerId
 
compile() - Method in class com.atilika.kuromoji.compile.CharacterDefinitionsCompiler
 
compile() - Method in interface com.atilika.kuromoji.compile.Compiler
 
compile() - Method in class com.atilika.kuromoji.compile.ConnectionCostsCompiler
 
compile() - Method in class com.atilika.kuromoji.compile.TokenInfoBufferCompiler
 
compile() - Method in class com.atilika.kuromoji.compile.TokenInfoDictionaryCompilerBase
 
compile() - Method in class com.atilika.kuromoji.compile.UnknownDictionaryCompiler
 
compile() - Method in class com.atilika.kuromoji.compile.WordIdMapCompiler
 
Compiler - Interface in com.atilika.kuromoji.compile
 
complete() - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayerSetupTest
 
Component - Class in org.deeplearning4j.ui.api
A component is anything that can be rendered, such at charts, text or tables.
Component(String, Style) - Constructor for class org.deeplearning4j.ui.api.Component
 
COMPONENT_TYPE - Static variable in class org.deeplearning4j.ui.components.chart.ChartHistogram
 
COMPONENT_TYPE - Static variable in class org.deeplearning4j.ui.components.chart.ChartHorizontalBar
 
COMPONENT_TYPE - Static variable in class org.deeplearning4j.ui.components.chart.ChartLine
 
COMPONENT_TYPE - Static variable in class org.deeplearning4j.ui.components.chart.ChartScatter
 
COMPONENT_TYPE - Static variable in class org.deeplearning4j.ui.components.chart.ChartStackedArea
 
COMPONENT_TYPE - Static variable in class org.deeplearning4j.ui.components.chart.ChartTimeline
 
COMPONENT_TYPE - Static variable in class org.deeplearning4j.ui.components.component.ComponentDiv
 
COMPONENT_TYPE - Static variable in class org.deeplearning4j.ui.components.decorator.DecoratorAccordion
 
COMPONENT_TYPE - Static variable in class org.deeplearning4j.ui.components.table.ComponentTable
 
COMPONENT_TYPE - Static variable in class org.deeplearning4j.ui.components.text.ComponentText
 
ComponentDiv - Class in org.deeplearning4j.ui.components.component
Div component (as in, HTML div)
ComponentDiv() - Constructor for class org.deeplearning4j.ui.components.component.ComponentDiv
 
ComponentDiv(Style, Component...) - Constructor for class org.deeplearning4j.ui.components.component.ComponentDiv
 
ComponentDiv(Style, Collection<Component>) - Constructor for class org.deeplearning4j.ui.components.component.ComponentDiv
 
ComponentObject - Class in org.deeplearning4j.ui.standalone
Created by Alex on 25/03/2016.
ComponentObject() - Constructor for class org.deeplearning4j.ui.standalone.ComponentObject
 
ComponentTable - Class in org.deeplearning4j.ui.components.table
Simple 2d table for text,
ComponentTable() - Constructor for class org.deeplearning4j.ui.components.table.ComponentTable
 
ComponentTable(ComponentTable.Builder) - Constructor for class org.deeplearning4j.ui.components.table.ComponentTable
 
ComponentTable(String[], String[][], StyleTable) - Constructor for class org.deeplearning4j.ui.components.table.ComponentTable
 
ComponentTable.Builder - Class in org.deeplearning4j.ui.components.table
 
ComponentText - Class in org.deeplearning4j.ui.components.text
Simple text component with styling
ComponentText() - Constructor for class org.deeplearning4j.ui.components.text.ComponentText
 
ComponentText(String, StyleText) - Constructor for class org.deeplearning4j.ui.components.text.ComponentText
 
ComponentText.Builder - Class in org.deeplearning4j.ui.components.text
 
componentType - Variable in class org.deeplearning4j.ui.api.Component
Component type: used by the Arbiter UI to determine how to decode and render the object which is represented by the JSON representation of this object
ComposableInputPreProcessor - Class in org.deeplearning4j.nn.conf.preprocessor
Composable input pre processor
ComposableInputPreProcessor(InputPreProcessor...) - Constructor for class org.deeplearning4j.nn.conf.preprocessor.ComposableInputPreProcessor
 
ComposableIterationListener - Class in org.deeplearning4j.optimize.listeners
A group of listeners
ComposableIterationListener(IterationListener...) - Constructor for class org.deeplearning4j.optimize.listeners.ComposableIterationListener
 
ComposableIterationListener(Collection<IterationListener>) - Constructor for class org.deeplearning4j.optimize.listeners.ComposableIterationListener
 
CompositeReconstructionDistribution - Class in org.deeplearning4j.nn.conf.layers.variational
CompositeReconstructionDistribution is a reconstruction distribution built from multiple other ReconstructionDistribution instances.
The typical use is to combine for example continuous and binary data in the same model, or to combine different distributions for continuous variables.
CompositeReconstructionDistribution(int[], ReconstructionDistribution[], int) - Constructor for class org.deeplearning4j.nn.conf.layers.variational.CompositeReconstructionDistribution
 
CompositeReconstructionDistribution.Builder - Class in org.deeplearning4j.nn.conf.layers.variational
 
ComputationGraph - Class in org.deeplearning4j.nn.graph
A ComputationGraph network is a neural network with arbitrary (directed acyclic graph) connection structure.
ComputationGraph(ComputationGraphConfiguration) - Constructor for class org.deeplearning4j.nn.graph.ComputationGraph
 
computationGraph - Variable in class org.deeplearning4j.streaming.routes.DL4jServeRouteBuilder
 
ComputationGraphConfiguration - Class in org.deeplearning4j.nn.conf
ComputationGraphConfiguration is a configuration object for neural networks with arbitrary connection structure.
ComputationGraphConfiguration() - Constructor for class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
 
ComputationGraphConfiguration.GraphBuilder - Class in org.deeplearning4j.nn.conf
 
ComputationGraphConfigurationTest - Class in org.deeplearning4j.nn.conf
 
ComputationGraphConfigurationTest() - Constructor for class org.deeplearning4j.nn.conf.ComputationGraphConfigurationTest
 
ComputationGraphConfigurationTest.StaticInnerGraphVertex - Class in org.deeplearning4j.nn.conf
 
ComputationGraphTestRNN - Class in org.deeplearning4j.nn.graph
 
ComputationGraphTestRNN() - Constructor for class org.deeplearning4j.nn.graph.ComputationGraphTestRNN
 
ComputationGraphUpdater - Class in org.deeplearning4j.nn.updater.graph
Gradient updater for ComputationGraph.
Note: ComputationGraph does not implement the Layer interface (due to multiple in/out etc), hence ComputationGraphUpdater can't be defined as an Updater.
ComputationGraphUpdater(ComputationGraph) - Constructor for class org.deeplearning4j.nn.updater.graph.ComputationGraphUpdater
 
ComputationGraphUpdater(ComputationGraph, INDArray) - Constructor for class org.deeplearning4j.nn.updater.graph.ComputationGraphUpdater
 
computationGraphUpdater - Variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
 
ComputationGraphUtil - Class in org.deeplearning4j.nn.graph.util
 
computeClusterInfos(Cluster, String) - Static method in class org.deeplearning4j.clustering.cluster.ClusterUtils
 
computeClusterSetInfo(ClusterSet) - Static method in class org.deeplearning4j.clustering.cluster.ClusterUtils
 
computeClusterSetInfo(ClusterSet, ExecutorService) - Static method in class org.deeplearning4j.clustering.cluster.ClusterUtils
 
computeEdgeForces(INDArray, INDArray, INDArray, int, INDArray) - Method in class org.deeplearning4j.clustering.quadtree.QuadTree
 
computeEdgeForces(INDArray, INDArray, INDArray, int, INDArray) - Method in class org.deeplearning4j.clustering.sptree.SpTree
Compute edge forces using barns hut
computeGaussianKernel(INDArray, double, int) - Method in class org.deeplearning4j.plot.BarnesHutTsne
Computes a gaussian kernel given a vector of squared distance distances
computeGaussianPerplexity(INDArray, double) - Method in class org.deeplearning4j.plot.BarnesHutTsne
Convert data to probability co-occurrences (aka calculating the kernel)
computeGradientAndScore() - Method in interface org.deeplearning4j.nn.api.Model
Update the score
computeGradientAndScore() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
 
computeGradientAndScore() - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
computeGradientAndScore() - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
 
computeGradientAndScore() - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
 
computeGradientAndScore() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.AutoEncoder
 
computeGradientAndScore() - Method in class org.deeplearning4j.nn.layers.feedforward.rbm.RBM
 
computeGradientAndScore() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
 
computeGradientAndScore() - Method in class org.deeplearning4j.nn.layers.LossLayer
 
computeGradientAndScore() - Method in class org.deeplearning4j.nn.layers.training.CenterLossOutputLayer
 
computeGradientAndScore() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
 
computeGradientAndScore() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
computeGradientAndScore() - Method in class org.deeplearning4j.plot.BarnesHutTsne
 
computeLossFunctionScoreArray(INDArray, INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.CompositeReconstructionDistribution
 
computeNonEdgeForces(int, double, INDArray, AtomicDouble) - Method in class org.deeplearning4j.clustering.quadtree.QuadTree
Compute non edge forces using barnes hut
computeNonEdgeForces(int, double, INDArray, AtomicDouble) - Method in class org.deeplearning4j.clustering.sptree.SpTree
Compute non edge forces using barnes hut
computeScore(double, double, boolean) - Method in interface org.deeplearning4j.nn.api.layers.IOutputLayer
Compute score after labels and input have been set.
computeScore(double, double, boolean) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
Compute score after labels and input have been set.
computeScore(double, double, boolean) - Method in class org.deeplearning4j.nn.layers.LossLayer
Compute score after labels and input have been set.
computeScore(double, double, boolean) - Method in class org.deeplearning4j.nn.layers.training.CenterLossOutputLayer
Compute score after labels and input have been set.
computeScore(VariationalAutoencoder, INDArray) - Method in class org.deeplearning4j.spark.impl.common.score.BaseVaeReconstructionProbWithKeyFunctionAdapter
 
computeScore(VariationalAutoencoder, INDArray) - Method in class org.deeplearning4j.spark.impl.common.score.BaseVaeScoreWithKeyFunctionAdapter
 
computeScore(VariationalAutoencoder, INDArray) - Method in class org.deeplearning4j.spark.impl.graph.scoring.CGVaeReconstructionErrorWithKeyFunction
 
computeScoreForExamples(double, double) - Method in interface org.deeplearning4j.nn.api.layers.IOutputLayer
Compute the score for each example individually, after labels and input have been set.
computeScoreForExamples(double, double) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
Compute the score for each example individually, after labels and input have been set.
computeScoreForExamples(double, double) - Method in class org.deeplearning4j.nn.layers.LossLayer
Compute the score for each example individually, after labels and input have been set.
computeScoreForExamples(double, double) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer
Compute the score for each example individually, after labels and input have been set.
computeScoreForExamples(double, double) - Method in class org.deeplearning4j.nn.layers.training.CenterLossOutputLayer
Compute the score for each example individually, after labels and input have been set.
computeSquareDistancesFromNearestCluster(ClusterSet, List<Point>, INDArray, ExecutorService) - Static method in class org.deeplearning4j.clustering.cluster.ClusterUtils
 
computeZ(boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
* Compute input linear transformation (z) of the output layer
computeZ(INDArray, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
Compute activations from input to output of the output layer
concat(Iterable<Iterator<? extends T>>) - Static method in class org.deeplearning4j.berkeley.Iterators
 
concat(Iterator<? extends T>...) - Static method in class org.deeplearning4j.berkeley.Iterators
 
concat(Iterable<T>, Iterable<T>) - Static method in class org.deeplearning4j.berkeley.Iterators
 
ConcurrentHashSet<E> - Class in org.deeplearning4j.parallelism
This is simplified ConcurrentHashSet implementation PLEASE NOTE: This class does NOT implement real equals & hashCode
ConcurrentHashSet() - Constructor for class org.deeplearning4j.parallelism.ConcurrentHashSet
 
ConcurrentHashSet(Collection<E>) - Constructor for class org.deeplearning4j.parallelism.ConcurrentHashSet
 
concurrentSkipListSet() - Static method in class org.deeplearning4j.util.MultiDimensionalSet
 
ConcurrentTokenizer - Class in org.deeplearning4j.text.tokenization.tokenizer
OpenNLP Tokenizer annotator.
ConcurrentTokenizer() - Constructor for class org.deeplearning4j.text.tokenization.tokenizer.ConcurrentTokenizer
Initializes a new instance.
conf() - Method in interface org.deeplearning4j.nn.api.Model
The configuration for the neural network
conf - Variable in class org.deeplearning4j.nn.conf.layers.setup.ConvolutionLayerSetup
Deprecated.
 
conf() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
 
conf - Variable in class org.deeplearning4j.nn.graph.TestCompGraphCNN
 
conf - Variable in class org.deeplearning4j.nn.layers.BaseLayer
 
conf() - Method in class org.deeplearning4j.nn.layers.BaseLayer
 
conf() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
 
conf - Variable in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
 
conf() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
 
conf() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
 
conf - Variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
 
conf() - Method in class org.deeplearning4j.plot.BarnesHutTsne
 
configuration - Variable in class org.deeplearning4j.models.embeddings.learning.impl.elements.SkipGram
 
configuration - Variable in class org.deeplearning4j.models.embeddings.learning.impl.sequence.DBOW
 
configuration - Variable in class org.deeplearning4j.models.sequencevectors.SequenceVectors.Builder
 
configuration - Variable in class org.deeplearning4j.models.sequencevectors.SequenceVectors
 
configuration - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
 
configuration - Variable in class org.deeplearning4j.spark.models.embeddings.word2vec.Word2Vec.Builder
 
configuration - Variable in class org.deeplearning4j.spark.models.embeddings.word2vec.Word2Vec
 
configuration - Variable in class org.deeplearning4j.spark.models.sequencevectors.SparkSequenceVectors.Builder
 
configurationBroadcast - Variable in class org.deeplearning4j.spark.models.sequencevectors.functions.BaseTokenizerFunction
 
configurationBroadcast - Variable in class org.deeplearning4j.spark.models.sequencevectors.functions.DistributedFunction
 
configurationBroadcast - Variable in class org.deeplearning4j.spark.models.sequencevectors.functions.PartitionTrainingFunction
 
configurationBroadcast - Variable in class org.deeplearning4j.spark.models.sequencevectors.functions.TrainingFunction
 
configurationBroadcast - Variable in class org.deeplearning4j.spark.models.sequencevectors.SparkSequenceVectors
 
configure(TokenizerBase.Builder) - Method in class com.atilika.kuromoji.TokenizerBase
 
configure(VocabCache<T>, WeightLookupTable<T>, VectorsConfiguration) - Method in interface org.deeplearning4j.models.embeddings.learning.ElementsLearningAlgorithm
 
configure(VocabCache<T>, WeightLookupTable<T>, VectorsConfiguration) - Method in class org.deeplearning4j.models.embeddings.learning.impl.elements.CBOW
 
configure(VocabCache<T>, WeightLookupTable<T>, VectorsConfiguration) - Method in class org.deeplearning4j.models.embeddings.learning.impl.elements.GloVe
 
configure(VocabCache<T>, WeightLookupTable<T>, VectorsConfiguration) - Method in class org.deeplearning4j.models.embeddings.learning.impl.elements.SkipGram
SkipGram initialization over given vocabulary and WeightLookupTable
configure(VocabCache<T>, WeightLookupTable<T>, VectorsConfiguration) - Method in class org.deeplearning4j.models.embeddings.learning.impl.sequence.DBOW
 
configure(VocabCache<T>, WeightLookupTable<T>, VectorsConfiguration) - Method in class org.deeplearning4j.models.embeddings.learning.impl.sequence.DM
 
configure(VocabCache<T>, WeightLookupTable<T>, VectorsConfiguration) - Method in interface org.deeplearning4j.models.embeddings.learning.SequenceLearningAlgorithm
 
configure(NeuralNetConfiguration) - Method in class org.deeplearning4j.optimize.Solver.Builder
 
configure(VocabCache<ShallowSequenceElement>, WeightLookupTable<ShallowSequenceElement>, VectorsConfiguration) - Method in class org.deeplearning4j.spark.models.sequencevectors.learning.elements.BaseSparkLearningAlgorithm
 
configure(VocabCache<ShallowSequenceElement>, WeightLookupTable<ShallowSequenceElement>, VectorsConfiguration) - Method in class org.deeplearning4j.spark.models.sequencevectors.learning.sequence.BaseSparkSequenceLearningAlgorithm
 
configure() - Method in class org.deeplearning4j.streaming.kafka.NDArrayPubSubRoute
Called on initialization to build the routes using the fluent builder syntax.

This is a central method for RouteBuilder implementations to implement the routes using the Java fluent builder syntax.

configure() - Method in class org.deeplearning4j.streaming.routes.CamelKafkaRouteBuilder
Let's configure the Camel routing rules using Java code...
configure() - Method in class org.deeplearning4j.streaming.routes.DL4jServeRouteBuilder
Called on initialization to build the routes using the fluent builder syntax.

This is a central method for RouteBuilder implementations to implement the routes using the Java fluent builder syntax.

configured - Variable in class org.deeplearning4j.models.sequencevectors.SequenceVectors
 
configureListeners(String, Collection<IterationListener>, Collection<IterationListener>) - Method in class org.deeplearning4j.parallelism.trainer.DefaultTrainer
 
configureMultiLayer() - Method in class org.deeplearning4j.nn.layers.BaseLayerTest
 
configureSingleLayer() - Method in class org.deeplearning4j.nn.layers.BaseLayerTest
 
confs - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
 
confs(List<NeuralNetConfiguration>) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
 
confs - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
 
confusion - Variable in class org.deeplearning4j.eval.Evaluation
 
ConfusionMatrix<T extends java.lang.Comparable<? super T>> - Class in org.deeplearning4j.eval
 
ConfusionMatrix(List<T>) - Constructor for class org.deeplearning4j.eval.ConfusionMatrix
Creates an empty confusion Matrix
ConfusionMatrix() - Constructor for class org.deeplearning4j.eval.ConfusionMatrix
 
ConfusionMatrix(ConfusionMatrix<T>) - Constructor for class org.deeplearning4j.eval.ConfusionMatrix
Creates a new ConfusionMatrix initialized with the contents of another ConfusionMatrix.
confusionMatrixMetaData - Variable in class org.deeplearning4j.eval.Evaluation
 
confusionToString() - Method in class org.deeplearning4j.eval.Evaluation
Get a String representation of the confusion matrix
ConjugateGradient - Class in org.deeplearning4j.optimize.solvers
Originally based on cc.mallet.optimize.ConjugateGradient Rewritten based on Conjugate Gradient algorithm in Bengio et al., Deep Learning (in preparation) Ch8.
ConjugateGradient(NeuralNetConfiguration, StepFunction, Collection<IterationListener>, Model) - Constructor for class org.deeplearning4j.optimize.solvers.ConjugateGradient
 
ConjugateGradient(NeuralNetConfiguration, StepFunction, Collection<IterationListener>, Collection<TerminationCondition>, Model) - Constructor for class org.deeplearning4j.optimize.solvers.ConjugateGradient
 
CONJUGATION_FORM - Static variable in class com.atilika.kuromoji.ipadic.compile.DictionaryEntry
 
CONJUGATION_TYPE - Static variable in class com.atilika.kuromoji.ipadic.compile.DictionaryEntry
 
connect(List<Tree>) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
Connects the given trees and sets the parents of the children
CONNECTION_COSTS_FILENAME - Static variable in class com.atilika.kuromoji.dict.ConnectionCosts
 
ConnectionCosts - Class in com.atilika.kuromoji.dict
 
ConnectionCosts(int, ShortBuffer) - Constructor for class com.atilika.kuromoji.dict.ConnectionCosts
 
connectionCosts - Variable in class com.atilika.kuromoji.TokenizerBase.Builder
 
ConnectionCostsCompiler - Class in com.atilika.kuromoji.compile
 
ConnectionCostsCompiler(OutputStream) - Constructor for class com.atilika.kuromoji.compile.ConnectionCostsCompiler
 
ConnectionCostsCompilerTest - Class in com.atilika.kuromoji.compile
 
ConnectionCostsCompilerTest() - Constructor for class com.atilika.kuromoji.compile.ConnectionCostsCompilerTest
 
constructTempDir(String) - Static method in class org.deeplearning4j.streaming.embedded.TestUtils
 
consume(InMemoryLookupTable<T>) - Method in class org.deeplearning4j.models.embeddings.inmemory.InMemoryLookupTable
This method consumes weights of a given InMemoryLookupTable PLEASE NOTE: this method explicitly resets current weights
consumeOnce(DataSet, boolean) - Method in class org.deeplearning4j.util.TestDataSetConsumer
This method consumes single DataSet, and spends delay time simulating execution of this dataset
consumeVocabulary(VocabularyHolder) - Method in class org.deeplearning4j.models.word2vec.wordstore.VocabularyHolder
 
consumeWhileHasNext(boolean) - Method in class org.deeplearning4j.util.TestDataSetConsumer
This method cycles through iterator, whie iterator.hasNext() returns true.
consumingTopic - Variable in class org.deeplearning4j.streaming.routes.DL4jServeRouteBuilder
 
contains(INDArray) - Method in class org.deeplearning4j.clustering.kdtree.HyperRect
 
contains(double) - Method in class org.deeplearning4j.clustering.kdtree.HyperRect.Interval
 
contains(INDArray) - Method in class org.deeplearning4j.clustering.sptree.Cell
 
contains(Object) - Method in class org.deeplearning4j.parallelism.ConcurrentHashSet
 
contains(Object) - Method in class org.deeplearning4j.parallelism.MagicQueue
This method isn't supported
contains(Object) - Method in class org.deeplearning4j.util.DiskBasedQueue
 
contains(K, T) - Method in class org.deeplearning4j.util.MultiDimensionalMap
 
contains(Object) - Method in class org.deeplearning4j.util.MultiDimensionalSet
Returns true if this applyTransformToDestination contains the specified element.
contains(K, V) - Method in class org.deeplearning4j.util.MultiDimensionalSet
 
containsAll(Collection<?>) - Method in class org.deeplearning4j.parallelism.ConcurrentHashSet
 
containsAll(Collection<?>) - Method in class org.deeplearning4j.parallelism.MagicQueue
This method isn't supported
containsAll(Collection<?>) - Method in class org.deeplearning4j.util.DiskBasedQueue
 
containsAll(Collection<?>) - Method in class org.deeplearning4j.util.MultiDimensionalSet
Returns true if this applyTransformToDestination contains all of the elements of the specified collection.
containsElement(T) - Method in class org.deeplearning4j.models.word2vec.wordstore.inmemory.AbstractCache
Checks, if specified element exists in vocabulary
containsKey(Object) - Method in class com.atilika.kuromoji.trie.PatriciaTrie
Test membership in this trie
containsKey(E) - Method in class org.deeplearning4j.berkeley.Counter
Returns whether the counter contains the given key.
containsKey(K) - Method in class org.deeplearning4j.berkeley.CounterMap
 
containsKey(Object) - Method in class org.deeplearning4j.util.MultiDimensionalMap
Returns true if this map contains a mapping for the specified key.
containsKeyPrefix(String) - Method in class com.atilika.kuromoji.trie.PatriciaTrie
Test key prefix membership in this trie (prefix search using key)
containsPoint(INDArray) - Method in class org.deeplearning4j.clustering.quadtree.Cell
Whether the given point is contained within this cell
containsValue(Object) - Method in class com.atilika.kuromoji.trie.PatriciaTrie
Predicate to test value membership
containsValue(Object) - Method in class org.deeplearning4j.util.MultiDimensionalMap
Returns true if this map maps one or more keys to the specified value.
containsWord(String) - Method in class org.deeplearning4j.models.word2vec.wordstore.inmemory.AbstractCache
Checks, if specified label exists in vocabulary
containsWord(String) - Method in class org.deeplearning4j.models.word2vec.wordstore.inmemory.InMemoryLookupCache
Deprecated.
Returns true if the cache contains the given word
containsWord(String) - Method in interface org.deeplearning4j.models.word2vec.wordstore.VocabCache
Returns true if the cache contains the given word
containsWord(String) - Method in class org.deeplearning4j.models.word2vec.wordstore.VocabularyHolder
Checks vocabulary for the word existance
content(String[][]) - Method in class org.deeplearning4j.ui.components.table.ComponentTable.Builder
Content for the table, as 2d String[]
content - Variable in class org.deeplearning4j.ui.standalone.ComponentObject
 
ContextLabelRetriever - Class in org.deeplearning4j.text.movingwindow
Context Label Retriever
ContextLabelTest - Class in org.deeplearning4j.util
Basic test case for the context label test
ContextLabelTest() - Constructor for class org.deeplearning4j.util.ContextLabelTest
 
contrastiveDivergence() - Method in class org.deeplearning4j.nn.layers.feedforward.rbm.RBM
Deprecated.
No longer used; use fit methods in MultiLayerNetwork
ConvergenceCondition - Class in org.deeplearning4j.clustering.algorithm.condition
 
ConvergenceCondition() - Constructor for class org.deeplearning4j.clustering.algorithm.condition.ConvergenceCondition
 
ConvergenceCondition(Condition, double) - Constructor for class org.deeplearning4j.clustering.algorithm.condition.ConvergenceCondition
 
convert(Collection<Collection<Writable>>, int) - Method in class org.deeplearning4j.streaming.conversion.dataset.CSVRecordToDataSet
 
convert(Collection<Collection<Writable>>, int) - Method in interface org.deeplearning4j.streaming.conversion.dataset.RecordToDataSet
Converts records in to a dataset
convert(Collection<Collection<Writable>>) - Method in class org.deeplearning4j.streaming.conversion.ndarray.CSVRecordToINDArray
 
convert(Collection<Collection<Writable>>) - Method in class org.deeplearning4j.streaming.conversion.ndarray.NDArrayRecordToNDArray
 
convert(Collection<Collection<Writable>>) - Method in interface org.deeplearning4j.streaming.conversion.ndarray.RecordToNDArray
Converts a list of records in to 1 ndarray
converter - Variable in class org.deeplearning4j.datasets.datavec.RecordReaderDataSetIterator
 
convertIpToOctets(String) - Static method in class org.deeplearning4j.spark.models.sequencevectors.utils.NetworkOrganizer
 
ConvexOptimizer - Interface in org.deeplearning4j.optimize.api
Convex optimizer.
Convolution1DLayer - Class in org.deeplearning4j.nn.conf.layers
1D (temporal) convolutional layer.
Convolution1DLayer - Class in org.deeplearning4j.nn.layers.convolution
1D (temporal) convolutional layer.
Convolution1DLayer(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.convolution.Convolution1DLayer
 
Convolution1DLayer(NeuralNetConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.layers.convolution.Convolution1DLayer
 
Convolution1DLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
 
CONVOLUTION_LAYER - Static variable in class org.deeplearning4j.nn.conf.layers.setup.ConvolutionLayerSetup
Deprecated.
 
convolutional(int, int, int) - Static method in class org.deeplearning4j.nn.conf.inputs.InputType
Input type for convolutional (CNN) data, that is 4d with shape [miniBatchSize, depth, height, width].
convolutionalFlat(int, int, int) - Static method in class org.deeplearning4j.nn.conf.inputs.InputType
Input type for convolutional (CNN) data, where the data is in flattened (row vector) format.
ConvolutionalIterationListener - Class in org.deeplearning4j.ui.weights
 
ConvolutionalIterationListener(UiConnectionInfo, int) - Constructor for class org.deeplearning4j.ui.weights.ConvolutionalIterationListener
 
ConvolutionalIterationListener(int) - Constructor for class org.deeplearning4j.ui.weights.ConvolutionalIterationListener
 
ConvolutionalIterationListener(int, boolean) - Constructor for class org.deeplearning4j.ui.weights.ConvolutionalIterationListener
 
ConvolutionalIterationListener(StatsStorageRouter, int, boolean) - Constructor for class org.deeplearning4j.ui.weights.ConvolutionalIterationListener
 
ConvolutionalIterationListener(StatsStorageRouter, int, boolean, String, String) - Constructor for class org.deeplearning4j.ui.weights.ConvolutionalIterationListener
 
ConvolutionalListenerModule - Class in org.deeplearning4j.ui.module.convolutional
Used for plotting results from the ConvolutionalIterationListener
ConvolutionalListenerModule() - Constructor for class org.deeplearning4j.ui.module.convolutional.ConvolutionalListenerModule
 
ConvolutionHelper - Interface in org.deeplearning4j.nn.layers.convolution
Helper for the convolution layer.
ConvolutionLayer - Class in org.deeplearning4j.nn.conf.layers
 
ConvolutionLayer(ConvolutionLayer.BaseConvBuilder<?>) - Constructor for class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
ConvolutionLayer nIn in the input layer is the number of channels nOut is the number of filters to be used in the net or in other words the depth The builder specifies the filter/kernel size, the stride and padding The pooling layer takes the kernel size
ConvolutionLayer - Class in org.deeplearning4j.nn.layers.convolution
Convolution layer
ConvolutionLayer(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
 
ConvolutionLayer(NeuralNetConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
 
ConvolutionLayer.AlgoMode - Enum in org.deeplearning4j.nn.conf.layers
 
ConvolutionLayer.BaseConvBuilder<T extends ConvolutionLayer.BaseConvBuilder<T>> - Class in org.deeplearning4j.nn.conf.layers
 
ConvolutionLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
 
ConvolutionLayerSetup - Class in org.deeplearning4j.nn.conf.layers.setup
Deprecated.
Use MultiLayerConfiguration.Builder.setInputType(InputType) to set nIns and add preprocessors as required. This can be done using builder.setInputType(InputType.convolutional(height, width, channels))
ConvolutionLayerSetup(MultiLayerConfiguration.Builder, int, int, int) - Constructor for class org.deeplearning4j.nn.conf.layers.setup.ConvolutionLayerSetup
Deprecated.
Use MultiLayerConfiguration.Builder.setInputType(InputType) to set nIns and add preprocessors as required. This can be done using builder.setInputType(InputType.convolutional(height, width, channels)) For image data that has been flattened into a row vector per example (shape [minibatchSize,depth*height*width]) instead use InputType.convolutionalFlat(height,width,depth).
ConvolutionLayerSetupTest - Class in org.deeplearning4j.nn.layers.convolution
 
ConvolutionLayerSetupTest() - Constructor for class org.deeplearning4j.nn.layers.convolution.ConvolutionLayerSetupTest
 
ConvolutionLayerTest - Class in org.deeplearning4j.nn.layers.convolution
 
ConvolutionLayerTest() - Constructor for class org.deeplearning4j.nn.layers.convolution.ConvolutionLayerTest
 
ConvolutionListenerPersistable - Class in org.deeplearning4j.ui.weights
Created by Alex on 24/10/2016.
ConvolutionListenerPersistable() - Constructor for class org.deeplearning4j.ui.weights.ConvolutionListenerPersistable
 
ConvolutionMode - Enum in org.deeplearning4j.nn.conf
ConvolutionMode defines how convolution operations should be executed for Convolutional and Subsampling layers, for a given input size and network configuration (specifically stride/padding/kernel sizes).
Currently, 3 modes are provided:

Strict: Output size for Convolutional and Subsampling layers are calculated as follows, in each dimension: outputSize = (inputSize - kernelSize + 2*padding) / stride + 1.
convolutionMode - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
 
convolutionMode(ConvolutionMode) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
Set the convolution mode for the Convolution layer.
convolutionMode(ConvolutionMode) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
Set the convolution mode for the Convolution layer.
convolutionMode - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
 
convolutionMode - Variable in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
 
convolutionMode(ConvolutionMode) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
Set the convolution mode for the Convolution layer.
convolutionMode - Variable in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
 
convolutionMode - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
convolutionMode(ConvolutionMode) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
 
convolutionMode - Variable in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
 
convolutionMode - Variable in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
 
convolutionMode - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
 
ConvolutionParamInitializer - Class in org.deeplearning4j.nn.params
Initialize convolution params.
ConvolutionParamInitializer() - Constructor for class org.deeplearning4j.nn.params.ConvolutionParamInitializer
 
ConvolutionUtils - Class in org.deeplearning4j.util
Convolutional shape utilities
CoOccurenceReader<T extends SequenceElement> - Interface in org.deeplearning4j.models.glove.count
Created by raver on 24.12.2015.
CoOccurrenceCalculator - Class in org.deeplearning4j.spark.models.embeddings.glove.cooccurrences
Calculate co occurrences based on tokens
CoOccurrenceCalculator(boolean, Broadcast<VocabCache<VocabWord>>, int) - Constructor for class org.deeplearning4j.spark.models.embeddings.glove.cooccurrences.CoOccurrenceCalculator
 
CoOccurrenceCounts - Class in org.deeplearning4j.spark.models.embeddings.glove.cooccurrences
Co occurrence count reduction
CoOccurrenceCounts() - Constructor for class org.deeplearning4j.spark.models.embeddings.glove.cooccurrences.CoOccurrenceCounts
 
coOccurrenceCounts(Broadcast<CounterMap<String, String>>) - Method in class org.deeplearning4j.spark.models.embeddings.glove.GloveParam.Builder
 
CoOccurrenceWeight<T extends SequenceElement> - Class in org.deeplearning4j.models.glove.count
Simple POJO holding pairs of elements and their respective weights, used in GloVe -> CoOccurrence
CoOccurrenceWeight() - Constructor for class org.deeplearning4j.models.glove.count.CoOccurrenceWeight
 
CoOccurrenceWriter<T extends SequenceElement> - Interface in org.deeplearning4j.models.glove.count
Created by fartovii on 25.12.15.
Coords - Class in org.deeplearning4j.ui.flow.beans
 
Coords() - Constructor for class org.deeplearning4j.ui.flow.beans.Coords
 
Coords(int, int) - Constructor for class org.deeplearning4j.ui.flow.beans.Coords
 
coordSplit(double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the coordinate split in a list of coordinates such that the values for ret[0] are the x values and ret[1] are the y values
coordSplit(List<Double>) - Static method in class org.deeplearning4j.util.MathUtils
This returns the coordinate split in a list of coordinates such that the values for ret[0] are the x values and ret[1] are the y values
copyWeightsToLayer(Layer) - Method in class org.deeplearning4j.nn.modelimport.keras.KerasLayer
Copy Keras layer weights to DL4J Layer.
corner(int) - Method in class org.deeplearning4j.clustering.sptree.Cell
 
corner() - Method in class org.deeplearning4j.clustering.sptree.Cell
 
CORRECT - Static variable in class org.deeplearning4j.models.embeddings.reader.impl.BasicModelUtils
 
correlation(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
Returns the correlation coefficient of two double vectors.
correlationR2(int) - Method in class org.deeplearning4j.eval.RegressionEvaluation
 
corruptionLevel(double) - Method in class org.deeplearning4j.nn.conf.layers.AutoEncoder.Builder
 
corruptionLevel - Variable in class org.deeplearning4j.nn.conf.layers.AutoEncoder
 
count(V, V) - Method in interface org.deeplearning4j.berkeley.CounterMap.CountFunction
 
count - Static variable in class org.deeplearning4j.models.sequencevectors.transformers.impl.iterables.ParallelTransformerIterator
 
count() - Method in class org.deeplearning4j.ui.stats.sbe.StaticInfoDecoder.HwDeviceInfoGroupDecoder
 
count() - Method in class org.deeplearning4j.ui.stats.sbe.StaticInfoDecoder.ModelParamNamesDecoder
 
count() - Method in class org.deeplearning4j.ui.stats.sbe.StaticInfoDecoder.SwEnvironmentInfoDecoder
 
count() - Method in class org.deeplearning4j.ui.stats.sbe.StorageMetaDataDecoder.ExtraMetaDataBytesDecoder
 
count() - Method in class org.deeplearning4j.ui.stats.sbe.UpdateDecoder.DataSetMetaDataBytesDecoder
 
count() - Method in class org.deeplearning4j.ui.stats.sbe.UpdateDecoder.DataSetMetaDataBytesDecoder.MetaDataBytesDecoder
 
count() - Method in class org.deeplearning4j.ui.stats.sbe.UpdateDecoder.GcStatsDecoder
 
count() - Method in class org.deeplearning4j.ui.stats.sbe.UpdateDecoder.LayerNamesDecoder
 
count() - Method in class org.deeplearning4j.ui.stats.sbe.UpdateDecoder.MemoryUseDecoder
 
count() - Method in class org.deeplearning4j.ui.stats.sbe.UpdateDecoder.ParamNamesDecoder
 
count() - Method in class org.deeplearning4j.ui.stats.sbe.UpdateDecoder.PerformanceDecoder
 
count() - Method in class org.deeplearning4j.ui.stats.sbe.UpdateDecoder.PerParameterStatsDecoder
 
count() - Method in class org.deeplearning4j.ui.stats.sbe.UpdateDecoder.PerParameterStatsDecoder.HistogramsDecoder
 
count() - Method in class org.deeplearning4j.ui.stats.sbe.UpdateDecoder.PerParameterStatsDecoder.HistogramsDecoder.HistogramCountsDecoder
 
count() - Method in class org.deeplearning4j.ui.stats.sbe.UpdateDecoder.PerParameterStatsDecoder.SummaryStatDecoder
 
CountCumSum - Class in org.deeplearning4j.spark.text.functions
 
CountCumSum(JavaRDD<AtomicLong>) - Constructor for class org.deeplearning4j.spark.text.functions.CountCumSum
 
countDown() - Method in class org.deeplearning4j.models.word2vec.StreamWork
 
Counter<E> - Class in org.deeplearning4j.berkeley
A map from objects to doubles.
Counter() - Constructor for class org.deeplearning4j.berkeley.Counter
 
Counter(boolean) - Constructor for class org.deeplearning4j.berkeley.Counter
 
Counter(MapFactory<E, Double>) - Constructor for class org.deeplearning4j.berkeley.Counter
 
Counter(Map<? extends E, Double>) - Constructor for class org.deeplearning4j.berkeley.Counter
 
Counter(Counter<? extends E>) - Constructor for class org.deeplearning4j.berkeley.Counter
 
Counter(Collection<? extends E>) - Constructor for class org.deeplearning4j.berkeley.Counter
 
counter - Variable in class org.deeplearning4j.models.sequencevectors.transformers.impl.GraphTransformer
 
counter - Variable in class org.deeplearning4j.spark.models.sequencevectors.learning.elements.SparkSkipGram
 
counter - Variable in class org.deeplearning4j.spark.models.sequencevectors.utils.NetworkOrganizer.VirtualNode
 
CounterMap<K,V> - Class in org.deeplearning4j.berkeley
Maintains counts of (key, value) pairs.
CounterMap(CounterMap<K, V>) - Constructor for class org.deeplearning4j.berkeley.CounterMap
 
CounterMap() - Constructor for class org.deeplearning4j.berkeley.CounterMap
 
CounterMap(MapFactory<K, Counter<V>>, MapFactory<V, Double>) - Constructor for class org.deeplearning4j.berkeley.CounterMap
 
CounterMap(boolean) - Constructor for class org.deeplearning4j.berkeley.CounterMap
 
CounterMap.CountFunction<V> - Interface in org.deeplearning4j.berkeley
 
countFinished - Variable in class org.deeplearning4j.models.paragraphvectors.ParagraphVectors
 
CountFunction<T extends SequenceElement> - Class in org.deeplearning4j.spark.models.sequencevectors.functions
This accumulator function does count individual elements, using provided Accumulator
CountFunction(Broadcast<VectorsConfiguration>, Broadcast<VoidConfiguration>, Accumulator<Counter<Long>>, boolean) - Constructor for class org.deeplearning4j.spark.models.sequencevectors.functions.CountFunction
 
CountMap<T extends SequenceElement> - Class in org.deeplearning4j.models.glove.count
Drop-in replacement for CounterMap WORK IN PROGRESS, PLEASE DO NOT USE
CountMap() - Constructor for class org.deeplearning4j.models.glove.count.CountMap
 
CountPartitionsFunction<T> - Class in org.deeplearning4j.spark.impl.common
This is a function use to count the number of elements in each partition.
CountPartitionsFunction() - Constructor for class org.deeplearning4j.spark.impl.common.CountPartitionsFunction
 
CountsForThreshold(double) - Constructor for class org.deeplearning4j.eval.ROC.CountsForThreshold
 
CountsForThreshold(double, int) - Constructor for class org.deeplearning4j.eval.ROCBinary.CountsForThreshold
 
countSubmitted - Variable in class org.deeplearning4j.models.paragraphvectors.ParagraphVectors
 
countTokens() - Method in class org.deeplearning4j.text.tokenization.tokenizer.DefaultStreamTokenizer
Returns number of tokens PLEASE NOTE: this method effectively preloads all tokens.
countTokens() - Method in class org.deeplearning4j.text.tokenization.tokenizer.DefaultTokenizer
 
countTokens() - Method in class org.deeplearning4j.text.tokenization.tokenizer.JapaneseTokenizer
 
countTokens() - Method in class org.deeplearning4j.text.tokenization.tokenizer.KoreanTokenizer
 
countTokens() - Method in class org.deeplearning4j.text.tokenization.tokenizer.NGramTokenizer
 
countTokens() - Method in class org.deeplearning4j.text.tokenization.tokenizer.PosUimaTokenizer
 
countTokens() - Method in interface org.deeplearning4j.text.tokenization.tokenizer.Tokenizer
The number of tokens in the tokenizer
countTokens() - Method in class org.deeplearning4j.text.tokenization.tokenizer.UimaTokenizer
 
create() - Method in class org.deeplearning4j.aws.ec2.Ec2BoxCreator
Create the instances
create() - Method in class org.deeplearning4j.bagofwords.vectorizer.DefaultInputStreamCreator
 
create(int) - Method in class org.deeplearning4j.graph.vertexfactory.IntegerVertexFactory
 
create(int) - Method in class org.deeplearning4j.graph.vertexfactory.StringVertexFactory
 
create(int) - Method in interface org.deeplearning4j.graph.vertexfactory.VertexFactory
 
create(int) - Method in class org.deeplearning4j.graph.vertexfactory.VoidVertexFactory
 
create(int) - Method in class org.deeplearning4j.models.sequencevectors.graph.vertex.AbstractVertexFactory
 
create(int, T) - Method in class org.deeplearning4j.models.sequencevectors.graph.vertex.AbstractVertexFactory
 
create(int) - Method in interface org.deeplearning4j.models.sequencevectors.graph.vertex.VertexFactory
 
create(int, T) - Method in interface org.deeplearning4j.models.sequencevectors.graph.vertex.VertexFactory
 
create() - Method in interface org.deeplearning4j.models.word2vec.InputStreamCreator
Create an input stream
create(int, Model, int, boolean, ParallelWrapper) - Method in class org.deeplearning4j.parallelism.factory.DefaultTrainerContext
Create a Trainer based on the given parameters
create(int, Model, int, boolean, ParallelWrapper) - Method in interface org.deeplearning4j.parallelism.factory.TrainerContext
Create a Trainer based on the given parameters
create() - Method in interface org.deeplearning4j.parallelism.main.DataSetIteratorProviderFactory
Create an DataSetIterator
create() - Method in class org.deeplearning4j.parallelism.main.MnistDataSetIteratorProviderFactory
Create an DataSetIterator
create() - Method in interface org.deeplearning4j.parallelism.main.MultiDataSetProviderFactory
Create an MultiDataSetIterator
create(int, Model, int, boolean, ParallelWrapper) - Method in class org.deeplearning4j.parallelism.parameterserver.ParameterServerTrainerContext
Create a Trainer based on the given parameters
create(String) - Method in class org.deeplearning4j.text.tokenization.tokenizerfactory.DefaultTokenizerFactory
 
create(InputStream) - Method in class org.deeplearning4j.text.tokenization.tokenizerfactory.DefaultTokenizerFactory
 
create(String) - Method in class org.deeplearning4j.text.tokenization.tokenizerfactory.JapaneseTokenizerFactory
 
create(InputStream) - Method in class org.deeplearning4j.text.tokenization.tokenizerfactory.JapaneseTokenizerFactory
 
create(String) - Method in class org.deeplearning4j.text.tokenization.tokenizerfactory.KoreanTokenizerFactory
 
create(InputStream) - Method in class org.deeplearning4j.text.tokenization.tokenizerfactory.KoreanTokenizerFactory
 
create(String) - Method in class org.deeplearning4j.text.tokenization.tokenizerfactory.NGramTokenizerFactory
 
create(InputStream) - Method in class org.deeplearning4j.text.tokenization.tokenizerfactory.NGramTokenizerFactory
 
create(String) - Method in class org.deeplearning4j.text.tokenization.tokenizerfactory.PosUimaTokenizerFactory
 
create(InputStream) - Method in class org.deeplearning4j.text.tokenization.tokenizerfactory.PosUimaTokenizerFactory
 
create(String) - Method in interface org.deeplearning4j.text.tokenization.tokenizerfactory.TokenizerFactory
The tokenizer to createComplex
create(InputStream) - Method in interface org.deeplearning4j.text.tokenization.tokenizerfactory.TokenizerFactory
Create a tokenizer based on an input stream
create(String) - Method in class org.deeplearning4j.text.tokenization.tokenizerfactory.UimaTokenizerFactory
 
create(InputStream) - Method in class org.deeplearning4j.text.tokenization.tokenizerfactory.UimaTokenizerFactory
 
createAppendingOutputStream(File) - Static method in class org.deeplearning4j.util.FileOperations
 
createBias(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.ConvolutionParamInitializer
 
createBias(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.DefaultParamInitializer
 
createBias(int, double, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.DefaultParamInitializer
 
createCenterLossMatrix(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.CenterLossParamInitializer
 
createConsumer() - Method in class org.deeplearning4j.streaming.kafka.NDArrayKafkaClient
 
createData() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfigurationTest
 
createDistribution(Distribution) - Static method in class org.deeplearning4j.nn.conf.distribution.Distributions
 
createGradient(INDArray...) - Method in class org.deeplearning4j.nn.layers.BaseLayer
Create a gradient list based on the passed in parameters.
createGradient(INDArray, INDArray, INDArray) - Method in class org.deeplearning4j.nn.layers.BasePretrainNetwork
 
createInputMatrix(int) - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
Creates a feature vector
createOutputMatrix(int) - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
createOutputVector(int) - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
Creates an output label matrix
createPublisher() - Method in class org.deeplearning4j.streaming.kafka.NDArrayKafkaClient
 
createRouteBuilder() - Method in class org.deeplearning4j.streaming.routes.Dl4jServingRouteTest
 
createSpot() - Method in class org.deeplearning4j.aws.ec2.Ec2BoxCreator
 
createStepFunction(StepFunction) - Static method in class org.deeplearning4j.optimize.stepfunctions.StepFunctions
 
createToken(int, String, ViterbiNode.Type, int, Dictionary) - Method in interface com.atilika.kuromoji.viterbi.TokenFactory
 
createTokenList(String) - Method in class com.atilika.kuromoji.TokenizerBase
Tokenizes the provided text and returns a list of tokens with various feature information
createTopic(String, int) - Method in class org.deeplearning4j.streaming.embedded.EmbeddedKafkaCluster
 
createTopics(String...) - Method in class org.deeplearning4j.streaming.embedded.EmbeddedKafkaCluster
 
createVisibleBias(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.PretrainParamInitializer
 
createWeightMatrix(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.ConvolutionParamInitializer
 
createWeightMatrix(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.DefaultParamInitializer
 
createWeightMatrix(int, int, WeightInit, Distribution, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.DefaultParamInitializer
 
createWithPath(String) - Static method in class org.deeplearning4j.text.sentenceiterator.labelaware.LabelAwareUimaSentenceIterator
Creates a uima sentence iterator with the given path
createWithPath(String) - Static method in class org.deeplearning4j.text.sentenceiterator.UimaSentenceIterator
Creates a uima sentence iterator with the given path
creds - Variable in class org.deeplearning4j.aws.s3.BaseS3
 
CSVReader(File) - Constructor for class org.deeplearning4j.models.embeddings.loader.WordVectorSerializer.CSVReader
 
CSVRecordToDataSet - Class in org.deeplearning4j.streaming.conversion.dataset
Assumes csv format and converts a batch of records in to a size() x record length matrix.
CSVRecordToDataSet() - Constructor for class org.deeplearning4j.streaming.conversion.dataset.CSVRecordToDataSet
 
CSVRecordToINDArray - Class in org.deeplearning4j.streaming.conversion.ndarray
Assumes csv format and converts a batch of records in to a size() x record length matrix.
CSVRecordToINDArray() - Constructor for class org.deeplearning4j.streaming.conversion.ndarray.CSVRecordToINDArray
 
cudnnAlgoMode - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
 
cudnnAlgoMode(ConvolutionLayer.AlgoMode) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
Defaults to "PREFER_FASTEST", but "NO_WORKSPACE" uses less memory.
cudnnAlgoMode(ConvolutionLayer.AlgoMode) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
Defaults to "PREFER_FASTEST", but "NO_WORKSPACE" uses less memory.
cudnnAlgoMode - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
Defaults to "PREFER_FASTEST", but "NO_WORKSPACE" uses less memory.
CudnnBatchNormalizationHelper - Class in org.deeplearning4j.nn.layers.normalization
cuDNN-based helper for the batch normalization layer.
CudnnBatchNormalizationHelper() - Constructor for class org.deeplearning4j.nn.layers.normalization.CudnnBatchNormalizationHelper
 
CudnnConvolutionHelper - Class in org.deeplearning4j.nn.layers.convolution
cuDNN-based helper for the convolution layer.
CudnnConvolutionHelper() - Constructor for class org.deeplearning4j.nn.layers.convolution.CudnnConvolutionHelper
 
CudnnLocalResponseNormalizationHelper - Class in org.deeplearning4j.nn.layers.normalization
cuDNN-based helper for the local response normalization layer.
CudnnLocalResponseNormalizationHelper() - Constructor for class org.deeplearning4j.nn.layers.normalization.CudnnLocalResponseNormalizationHelper
 
CudnnSubsamplingHelper - Class in org.deeplearning4j.nn.layers.convolution.subsampling
cuDNN-based helper for the subsampling layer.
CudnnSubsamplingHelper() - Constructor for class org.deeplearning4j.nn.layers.convolution.subsampling.CudnnSubsamplingHelper
 
cumSumBetweenPartition() - Method in class org.deeplearning4j.spark.text.functions.CountCumSum
 
cumSumWithinPartition() - Method in class org.deeplearning4j.spark.text.functions.CountCumSum
 
curr - Variable in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
currBucket() - Method in class org.deeplearning4j.aws.s3.reader.BaseS3DataSetIterator
 
currentFile - Variable in class org.deeplearning4j.text.sentenceiterator.FileSentenceIterator
 
currentIterator - Variable in class org.deeplearning4j.models.sequencevectors.transformers.impl.SentenceTransformer
 
currentIterator - Variable in class org.deeplearning4j.text.documentiterator.SimpleLabelAwareIterator
 
currentLabel() - Method in interface org.deeplearning4j.text.documentiterator.LabelAwareDocumentIterator
Returns the current label
currentLabel() - Method in class org.deeplearning4j.text.sentenceiterator.labelaware.LabelAwareFileSentenceIterator
 
currentLabel() - Method in class org.deeplearning4j.text.sentenceiterator.labelaware.LabelAwareListSentenceIterator
Returns the current label for nextSentence()
currentLabel() - Method in interface org.deeplearning4j.text.sentenceiterator.labelaware.LabelAwareSentenceIterator
Returns the current label for nextSentence()
currentLabel() - Method in class org.deeplearning4j.text.sentenceiterator.labelaware.LabelAwareUimaSentenceIterator
Returns the current label for nextSentence()
currentLabels() - Method in class org.deeplearning4j.text.sentenceiterator.labelaware.LabelAwareFileSentenceIterator
 
currentLabels() - Method in class org.deeplearning4j.text.sentenceiterator.labelaware.LabelAwareListSentenceIterator
 
currentLabels() - Method in interface org.deeplearning4j.text.sentenceiterator.labelaware.LabelAwareSentenceIterator
For multi label problems
currentLabels() - Method in class org.deeplearning4j.text.sentenceiterator.labelaware.LabelAwareUimaSentenceIterator
 
currentTimeMillis() - Method in class org.deeplearning4j.spark.time.NTPTimeSource
 
currentTimeMillis() - Method in class org.deeplearning4j.spark.time.SystemClockTimeSource
 
currentTimeMillis() - Method in interface org.deeplearning4j.spark.time.TimeSource
Get the current time in milliseconds, according to this TimeSource
currIndex - Variable in class org.deeplearning4j.models.embeddings.inmemory.InMemoryLookupTable.WeightIterator
 
currLineIterator - Variable in class org.deeplearning4j.text.sentenceiterator.FileSentenceIterator
 
cursor() - Method in class org.deeplearning4j.datasets.datavec.RecordReaderDataSetIterator
 
cursor() - Method in class org.deeplearning4j.datasets.datavec.SequenceRecordReaderDataSetIterator
 
cursor - Variable in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
cursor() - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
cursor() - Method in class org.deeplearning4j.datasets.iterator.AbstractDataSetIterator
The current cursor if applicable
cursor() - Method in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
 
cursor() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
cursor() - Method in interface org.deeplearning4j.datasets.iterator.DataSetFetcher
Deprecated.
Direct access to a number represenative of iterating through a dataset
cursor() - Method in class org.deeplearning4j.datasets.iterator.ExistingDataSetIterator
 
cursor() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
cursor() - Method in class org.deeplearning4j.datasets.iterator.IteratorDataSetIterator
 
cursor() - Method in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
The current cursor if applicable
cursor() - Method in class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
The current cursor if applicable
cursor() - Method in class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
 
cursor() - Method in class org.deeplearning4j.datasets.test.TestDataSetIterator
 
cursor() - Method in class org.deeplearning4j.iterator.CnnSentenceDataSetIterator
 
cursor() - Method in class org.deeplearning4j.keras.HDF5MiniBatchDataSetIterator
 
cursor() - Method in class org.deeplearning4j.models.word2vec.iterator.Word2VecDataFetcher
 
cursor() - Method in class org.deeplearning4j.models.word2vec.iterator.Word2VecDataSetIterator
 
cursor - Variable in class org.deeplearning4j.spark.iterator.BaseDataSetIterator
 
cursor() - Method in class org.deeplearning4j.spark.iterator.BaseDataSetIterator
 
CURVES_FILE_NAME - Static variable in class org.deeplearning4j.datasets.fetchers.CurvesDataFetcher
 
CURVES_URL - Static variable in class org.deeplearning4j.datasets.fetchers.CurvesDataFetcher
 
CurvesDataFetcher - Class in org.deeplearning4j.datasets.fetchers
Curves data fetcher
CurvesDataFetcher() - Constructor for class org.deeplearning4j.datasets.fetchers.CurvesDataFetcher
 
CurvesDataSetIterator - Class in org.deeplearning4j.datasets.iterator
Curves data applyTransformToDestination iterator
CurvesDataSetIterator(int, int) - Constructor for class org.deeplearning4j.datasets.iterator.CurvesDataSetIterator
 
CUSTOM_FUNCTIONALITY - Static variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
System property for custom layers, preprocessors, graph vertices etc.
CustomActivation - Class in org.deeplearning4j.nn.layers.custom.testclasses
Created by Alex on 19/12/2016.
CustomActivation() - Constructor for class org.deeplearning4j.nn.layers.custom.testclasses.CustomActivation
 
CustomLayer - Class in org.deeplearning4j.nn.layers.custom.testclasses
Created by Alex on 26/08/2016.
CustomLayer(double) - Constructor for class org.deeplearning4j.nn.layers.custom.testclasses.CustomLayer
 
CustomLayer - Class in org.deeplearning4j.spark.impl.customlayer.layer
Created by Alex on 26/08/2016.
CustomLayer(double) - Constructor for class org.deeplearning4j.spark.impl.customlayer.layer.CustomLayer
 
CustomLayerImpl - Class in org.deeplearning4j.nn.layers.custom.testclasses
Basically: identical to DenseLayer Created by Alex on 26/08/2016.
CustomLayerImpl(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.custom.testclasses.CustomLayerImpl
 
CustomLayerImpl - Class in org.deeplearning4j.spark.impl.customlayer.layer
Basically: identical to DenseLayer Created by Alex on 26/08/2016.
CustomLayerImpl(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.spark.impl.customlayer.layer.CustomLayerImpl
 
CustomOutputLayer - Class in org.deeplearning4j.nn.layers.custom.testclasses
A custom output layer for testing.
CustomOutputLayer(CustomOutputLayer.Builder) - Constructor for class org.deeplearning4j.nn.layers.custom.testclasses.CustomOutputLayer
 
CustomOutputLayer.Builder - Class in org.deeplearning4j.nn.layers.custom.testclasses
 
CustomOutputLayerImpl - Class in org.deeplearning4j.nn.layers.custom.testclasses
Created by Alex on 28/08/2016.
CustomOutputLayerImpl(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.custom.testclasses.CustomOutputLayerImpl
 
CustomPreprocessorTest - Class in org.deeplearning4j.nn.conf.preprocessor
Created by Alex on 09/09/2016.
CustomPreprocessorTest() - Constructor for class org.deeplearning4j.nn.conf.preprocessor.CustomPreprocessorTest
 
CustomStemmingPreprocessor - Class in org.deeplearning4j.text.tokenization.tokenizer.preprocessor
This is StemmingPreprocessor compatible with different StemmingProcessors defined as lucene/tartarus SnowballProgram Like, but not limited to: RussianStemmer, DutchStemmer, FrenchStemmer etc PLEASE NOTE: This preprocessor is thread-safe by using synchronized method
CustomStemmingPreprocessor(SnowballProgram) - Constructor for class org.deeplearning4j.text.tokenization.tokenizer.preprocessor.CustomStemmingPreprocessor
 
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Skip navigation links