深度自动编码器

深度自动编码器由两个对称的深度置信网络组成,其中一个深度置信网络通常有四到五个浅层,构成负责编码的部分,另一个四到五层的网络则是解码部分。

这些层都是受限玻尔兹曼机(RBM),即构成深度置信网络的基本单元,它们有一些特殊之处,我们将在下文中介绍。以下是简化的深度自动编码器架构示意图,下文会作具体说明。

deeplearning4j

处理基准数据集MNIST时,深度自动编码器会在每个RBM之后使用二进制变换。深度自动编码器还可以用于包含实数数据的其他类型的数据集,此时编码器中的RBM可以改用高斯修正变换。


编码

让我们用以下的示例来描绘一个编码器的大致结构:


784 (输入) ----> 1000 ----> 500 ----> 250 ----> 100 -----> 30

假设进入网络的输入是784个像素(MNIST数据集中28 x 28像素的图像),那么深度自动编码器的第一层应当有1000个参数,即相对较大。

这可能会显得有违常理,因为参数多于输入往往会导致神经网络过拟合。

在这个例子当中, 增加参数从某种意义上来看也就是增加输入本身的特征,而这将使经过自动编码的数据最终能被解码。

其原因在于每个层中用于变换的sigmoid置信单元的表示能力。sigmoid置信单元无法表示与实数数据等量的信息和差异,而补偿方法之一就是扩张第一个层。

各个层将分别有1000、500、250、100个节点,直至网络最终生成一个30个数值长的向量。这一30个数值的向量是深度自动编码器负责预定型的前半部分的最后一层,由一个普通的RBM生成,而不是一个通常会出现在深度置信网络末端的Softmax或逻辑回归分类输出层。


解码

这30个数值是28 x 28像素图像被编码后的版本。深度自动编码器的后半部分会学习如何解码这一压缩后的向量,将其作为输入一步步还原。

深度自动编码器的解码部分是一个前馈网络,它的各个层分别有100、250、500和1000个节点。 层的权重以随机方式初始化。


定型细节

在解码器的反向传播阶段,学习速率应当降低,减慢速度:大约取在1e-3和1e-6之间,具体取决于处理的是二进制数据还是连续数据(分别对应区间的两端)。


应用案例

图像搜索

如上文所述,深度自动编码器可以将图像压缩为30个数值的向量。

因此图像搜索的过程就变成:上传图像,搜索引擎将图像压缩为30个数值,然后将这个向量与索引中的所有其他向量进行比较。

包含相似数值的向量将被返回,再转换为与之匹配的图像,成为搜索查询的结果。


数据压缩

图像压缩更广泛的应用是数据压缩。正如Geoff Hinton在这篇论文中所述,深度自动编码器可用于语义哈希。


主题建模和信息检索(IR)

深度自动编码器可用于主题建模,即以统计学方式对分布于一个文档集合中的抽象主题建模。

这是沃森等问答系统的一个重要环节。

简而言之,集合中的每篇文档会被转换为一个词袋(即一组词频),而这些词频会被缩放为0到1之间的小数,可以视之为词在文档中出现的概率。

缩放后的词频被输入由受限玻尔兹曼机堆叠构成的深度置信网络,而受限玻尔兹曼机本身就是一种前馈式反向传播自动编码器。这些深度置信网络(DBN)通过一系列sigmoid变换将文档映射至特征空间,从而把每篇文档压缩为10个数值。

每篇文档的数值组,即向量会被引入同一个向量空间,测量它到其他各个文档向量的距离。彼此接近的文档向量大致上可以归为同一个主题。

例如,一篇文档可能是“问题”,而其他的文档可能是“回答”,软件可以通过在向量空间中测量距离来完成这样的匹配。


代码示例

深度自动编码器可以通过拓展Deeplearning4j的MultiLayerNetwork类来构建。

代码大致如下:


final int numRows = 28;
    final int numColumns = 28;
    int seed = 123;
    int numSamples = MnistDataFetcher.NUM_EXAMPLES;
    int batchSize = 1000;
    int iterations = 1;
    int listenerFreq = iterations/5;

    log.info("Load data....");
    DataSetIterator iter = new MnistDataSetIterator(batchSize,numSamples,true);

    log.info("Build model....");
    MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
            .seed(seed)
            .iterations(iterations)
            .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
            .list(10)
            .layer(0, new RBM.Builder().nIn(numRows * numColumns).nOut(1000).lossFunction(LossFunctions.LossFunction.RMSE_XENT).build())
            .layer(1, new RBM.Builder().nIn(1000).nOut(500).lossFunction(LossFunctions.LossFunction.RMSE_XENT).build())
            .layer(2, new RBM.Builder().nIn(500).nOut(250).lossFunction(LossFunctions.LossFunction.RMSE_XENT).build())
            .layer(3, new RBM.Builder().nIn(250).nOut(100).lossFunction(LossFunctions.LossFunction.RMSE_XENT).build())
            .layer(4, new RBM.Builder().nIn(100).nOut(30).lossFunction(LossFunctions.LossFunction.RMSE_XENT).build()) 
            
            //编码停止
            .layer(5, new RBM.Builder().nIn(30).nOut(100).lossFunction(LossFunctions.LossFunction.RMSE_XENT).build()) 	
            
            //解码开始
            .layer(6, new RBM.Builder().nIn(100).nOut(250).lossFunction(LossFunctions.LossFunction.RMSE_XENT).build())
            .layer(7, new RBM.Builder().nIn(250).nOut(500).lossFunction(LossFunctions.LossFunction.RMSE_XENT).build())
            .layer(8, new RBM.Builder().nIn(500).nOut(1000).lossFunction(LossFunctions.LossFunction.RMSE_XENT).build())
            .layer(9, new OutputLayer.Builder(LossFunctions.LossFunction.RMSE_XENT).nIn(1000).nOut(numRows*numColumns).build())
            .pretrain(true).backprop(true)
            .build();

     MultiLayerNetwork model = new MultiLayerNetwork(conf);
     model.init();

     model.setListeners(Arrays.asList((IterationListener) new ScoreIterationListener(listenerFreq)));

     log.info("Train model....");
     while(iter.hasNext()) {
        DataSet next = iter.next();
        model.fit(new DataSet(next.getFeatureMatrix(),next.getFeatureMatrix()));

如需构建深度自动编码器,请确保您已安装Deeplearning4j及其示例的最新版本。

如有关于深度自动编码器的问题,请在Gitter与我们联系。

与我们在Gitter聊天